Power Management

Researchers Control Surface Tension of Liquid Metals

Researchers from North Carolina State University have developed a technique for controlling the surface tension of liquid metals by applying very low voltages, opening the door to a new generation of reconfigurable electronic circuits, antennas and other technologies. The technique hinges on the fact that the oxide “skin” of the metal – which can be deposited or removed – acts as a surfactant, lowering the surface tension between the metal and the surrounding fluid.

The researchers used a liquid metal alloy of gallium and indium. In base, the bare alloy has a remarkably high surface tension of about 500 millinewtons (mN)/meter, which causes the metal to bead up into a spherical blob.

“But we discovered that applying a small, positive charge – less than 1 volt – causes an electrochemical reaction that creates an oxide layer on the surface of the metal, dramatically lowering the surface tension from 500 mN/meter to around 2 mN/meter,” says Dr. Michael Dickey, an associate professor of chemical and biomolecular engineering at NC State and senior author of a paper describing the work. “This change allows the liquid metal to spread out like a pancake, due to gravity.”

The researchers also showed that the change in surface tension is reversible. If researchers flip the polarity of the charge from positive to negative, the oxide is eliminated and high surface tension is restored.  The surface tension can be tuned between these two extremes by varying the voltage in small steps.

Source

Also: Learn about Gradient Metal Alloys Fabricated Using Additive Manufacturing.

Posted in: News, Electronics, Electronics & Computers, Power Management, Materials, Metals, Antennas, RF & Microwave Electronics
Read More >>

Engineers Prepare Battery Module Swapping Approach for Electric Cars

Imagine being able to switch out the batteries in electric cars just like you switch out batteries in a photo camera or flashlight. A team of engineers at the University of California, San Diego, are trying to accomplish just that, in partnership with a local San Diego engineering company.

Rather than swapping out the whole battery, which is cumbersome and requires large, heavy equipment, engineers plan to swap out and recharge smaller units within the battery, known as modules.

Swapping battery modules could also have far-reaching implications for mobile and decentralized electrical energy storage systems such as solar backup and portable generators. The technology can make energy storage more configurable, promote safety, simplify maintenance and eventually eliminate the use of fossil fuels for these applications.

Engineers not only believe that their approach is viable, but also plan to prove it. They will embark on a cross-country trip with a car powered by the removable, rechargeable M-BEAM, or Modular Battery Exchange and Active Management, battery modules.  They plan to drive from coast to coast only taking breaks that are a few minutes long to swap out the modules that will be recharged in a chase vehicle. They believe they can drive from San Diego to the coast of South Carolina less than 60 hours — without going over the speed limit.

Source

Also: Learn about a Full-Cell Evaluation/Screening Technique for New Battery Chemistries.

Posted in: News, Automotive, Batteries, Electronics & Computers, Power Management, Energy, Renewable Energy, Solar Power
Read More >>

Water Splitter Runs on AAA Battery

Scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis.  The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron.

In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, an important industrial chemical.

Splitting water to make hydrogen requires no fossil fuels and emits no greenhouse gases. But scientists have yet to develop an affordable, active water splitter with catalysts capable of working at industrial scales.

"It's been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability," said Stanford University Professor Hongjie Dai. "When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise."

Source

Also: Learn about a Proton Exchange Membrane Fuel Cell.

Posted in: News, Batteries, Electronics & Computers, Power Management, Alternative Fuels, Energy, Green Design & Manufacturing, Materials, Metals
Read More >>

New Circuits Can Function at Temperatures Above 650°F

Engineering researchers at the University of Arkansas have designed integrated circuits that can survive at temperatures greater than 350 degrees Celsius — or roughly 660 degrees Fahrenheit. Their work, funded by the National Science Foundation, will improve the functioning of processors, drivers, controllers and other analog and digital circuits used in power electronics, automobiles and aerospace equipment, all of which must perform at high and often extreme temperatures.

Posted in: News, Aerospace, Board-Level Electronics, Electronic Components, Electronics, Electronics & Computers, Power Management, Semiconductors & ICs, Automotive, Transportation
Read More >>

Astronauts to Test Free-Flying Robotic 'Smart SPHERES'

Three bowling ball-size free-flying Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) have been flying inside the International Space Station since 2006. These satellites provide a test bed for development and research, each having its own power, propulsion, computer, navigation equipment, and physical and electrical connections for hardware and sensors for various experiments.

Aboard Orbital Sciences Corp.'s second contracted commercial resupply mission to the space station, which arrived to the orbital laboratory on July 16, NASA's Ames Research Center in Moffett Field, California, sent two Google prototype Project Tango smartphones that astronauts will attach to the SPHERES for technology demonstrations inside the space station.

By connecting a smartphone to the SPHERES, the technology becomes "Smart SPHERES, " a more "intelligent" free-flying robot with built-in cameras to take pictures and video, sensors to help conduct inspections, powerful computing units to make calculations and Wi-Fi connections to transfer data in real time to the computers aboard the space station and at mission control in Houston.

In a two-phase experiment, astronauts will manually use the smartphones to collect visual data using the integrated custom 3-D sensor to generate a full 3-D model of their environment. After the map and its coordinate system are developed, a second activity will involve the smartphones attached to the SPHERES, becoming the free-flying Smart SPHERES. As the free-flying robots move around the space station from waypoint to waypoint, utilizing the 3-D map, they will provide situational awareness to crewmembers inside the station and flight controllers in mission control. These experiments allow NASA to test vision-based navigation in a very small mobile product.

Source

Also: Learn about Automatic Lunar Rock Detection and Mapping.

Posted in: News, Aerospace, Aviation, Communications, Electronics & Computers, PCs/Portable Computers, Power Management, Cameras, Imaging, Video, Visualization Software, RF & Microwave Electronics, Automation, Robotics, Sensors, Test & Measurement
Read More >>

Agile Aperture Antenna Tested on Aircraft to Maintain Satellite Connection

Two of Georgia Tech's software-defined, electronically reconfigurable Agile Aperture Antennas (A3) were demonstrated in an aircraft during flight tests. The low-power devices can change beam directions in a thousandth of a second. One device, looking up, maintained a satellite data connection as the aircraft changed headings, banked and rolled, while the other antenna looked down to track electromagnetic emitters on the ground.

Posted in: News, Aerospace, Aviation, Communications, Wireless, Board-Level Electronics, Electronic Components, Electronics, Electronics & Computers, Power Management, Antennas, RF & Microwave Electronics, Software, Measuring Instruments, Test & Measurement
Read More >>

New Supercapacitor Could Make Structural Energy Storage A Reality

Imagine a future in which our electrical gadgets are no longer limited by plugs and external power sources. This intriguing prospect is one of the reasons for the current interest in building the capacity to store electrical energy directly into a wide range of products, such as a laptop whose casing serves as its battery, or an electric car powered by energy stored in its chassis, or a home where the dry wall and siding store the electricity that runs the lights and appliances. It also makes the small, dull grey wafers that graduate student Andrew Westover and Assistant Professor of Mechanical Engineering Cary Pint have made in Vanderbilt's Nanomaterials and Energy Devices Laboratory far more important than their nondescript appearance suggests.

Posted in: News, Electronic Components, Electronics & Computers, Power Management, Energy, Energy Storage, Semiconductors & ICs
Read More >>

Wireless System Paves Way for 'Electroceutical' Medical Devices

A wireless system uses the same power as a cell phone to safely transmit energy to chips the size of a grain of rice. The technology paves the way for new "electroceutical" devices to treat illness or alleviate pain.

The central discovery is an engineering breakthrough that creates a new type of wireless power transfer that can safely penetrate deep inside the body.

The technology could spawn a new generation of programmable microimplants – sensors to monitor vital functions deep inside the body; electrostimulators to change neural signals in the brain; and drug delivery systems to apply medicines directly to affected areas.

Source

Also: Visit Medical Design Briefs.

Posted in: News, Communications, Wireless, Electronic Components, Electronics & Computers, Power Management, Drug Delivery, Implants & Prosthetics, Medical, Patient Monitoring, RF & Microwave Electronics, Semiconductors & ICs
Read More >>

Big Ideas for Small Spaces

Over 24 hours from April 4 to 5, six top French design studios conceived and presented new product concepts for urban environments during the Small Spaces Design Hackathon, presented by Cut&Paste in partnership with Hewlett-Packard. In dense city neighborhoods, homes are small and office space is at a premium, so urban dwellers must be more creative in how they use their space. The design concepts were presented at Cyclone Le Studio as part of ZED, HP’s creative popup space.

Posted in: News, Electronics & Computers, PCs/Portable Computers, Power Management, Energy, Displays/Monitors/HMIs, Imaging, Lighting, Computer-Aided Design (CAD), Computer-Aided Engineering (CAE), Computer-Aided Manufacturing (CAM), Software, Monitoring, Test & Measurement
Read More >>

Nanomaterial Extends Lithium-Sulfur Battery Lifespan

A new nanomaterial could extend the lifespan of lithium-sulfur batteries, and therefore the driving range of electric vehicles.

Pacific Northwest National Laboratory researchers added the powder to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.

Metal organic frameworks — also called MOFs — are crystal-like compounds made of metal clusters connected to organic molecules, or linkers. Together, the clusters and linkers assemble into porous 3-D structures.

During lab tests, a lithium-sulfur battery with PNNL's MOF cathode maintained 89 percent of its initial power capacity after 100 charge-and discharge cycles. Having shown the effectiveness of their MOF cathode, PNNL researchers now plan to further improve the cathode's mixture of materials so it can hold more energy.

Source

Also: Check out other Materials tech briefs.

Posted in: News, Batteries, Electronics & Computers, Power Management, Materials, Metals, Nanotechnology
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.