Electrical/Electronics

Architectures for Implementing a Hardware-in-the-Loop System

Safety, availability, or cost considerations can make it impractical to perform all the necessary tests with the complete embedded control system. Using hardware-in-the-loop (HIL) simulation, you can simulate the parts of the system that pose these challenges. By thoroughly testing the embedded control device in a virtual environment before proceeding to real-world tests of the complete system, you can maintain reliability and time-to-market requirements in a cost-effective manner even as the systems you are testing become more complex. Download this whitepaper to find out more about implement a HIL system into your test environment.

Posted in: White Papers, Automotive, Electronics & Computers, Test & Measurement
Read More >>

A Modular Apparatus and Method for Attaching Multiple Devices

This technology improves the real-time monitoring of high-temperature or other harsh environments.

Posted in: Briefs, Electronics & Computers, Electronic equipment, Sensors and actuators, Electronic equipment, Sensors and actuators, Fabrication, Silicon alloys, Protective structures
Read More >>

Conquering Radar Signal Generation

This Webinar will focus on the challenges related to the creation and generation of complex radar signals and provide you with some tools to help make this task more efficient. This 60-minute webinar features Tektronix expert Christopher Skach, who will share his insights on the key factors to consider when creating and generating these complex signals.

Posted in: On-Demand Webinars, Electronics & Computers
Read More >>

How to Make Custom SoCs Smart

Custom SoCs are the new vogue: Analog is becoming smart, and there is a new wave of custom SoCs integrating analog and digital to create smaller, lower-cost products.

Posted in: Tech Talks, Electronics & Computers
Read More >>

Radar Signal Generation with a High-Performance AWG

Radar ensures the safety and security of the skies, and lives depend on it. That’s why radar design measurements call for high frequency, realistic stimulus signals. You need to create these complex radar test signals at high frequencies, but what’s the best solution?

Posted in: White Papers, White Papers, Aerospace, Defense, Electronics & Computers, RF & Microwave Electronics
Read More >>

Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections

This technology produces sensors for axial load force, linear displacement, rotation, strain, pressure, torque, and motion sensing.

NASA Langley Research Center has developed a wireless, connection-free, open-circuit technology that can be used for developing electrical devices such as sensors that need no physical contact with the properties being measured. At the core of the technology is the SansEC (Sans Electrical Connections) circuit, which is damage-resilient and environmentally friendly to manufacture and use. The technology uses a NASA award-winning magnetic field response measurement acquisition device to provide power to the device and, in the case of a sensor application, to acquire physical property measurements from them. This fundamental new approach using open circuits enables applications such as sensors for axial load force, linear displacement, rotation, strain, pressure, torque, and motion sensing, as well as unique designs such as for a wireless keypad or wireless rotational dial, or for energy storage.

Posted in: Briefs, Electronics & Computers, Architecture, Integrated circuits, Sensors and actuators, Wireless communication systems, Architecture, Integrated circuits, Sensors and actuators, Wireless communication systems, Electric power, Magnetic materials
Read More >>

ISO 26262 & Automotive Electronics Development

Compliance standards, especially those that involve relatively new functional safety elements, will likely add additional requirements to the development process. But ISO 26262, in particular, will add more than new requirements to the product life cycle for automotive hardware-software systems. This Functional Safety standard will act as a framework impacting integrated requirements traceability, risk management, validation, verification, documentation and collaboration throughout the systems engineering “V” model life cycle process (see Figure). ISO 26262 will also require the qualification of tools used to create automotive systems. This paper examines the impact of the standard on the development process and support tool chains for automotive electronics.

Posted in: Briefs, TSP, Electronics & Computers, Information Sciences, Semiconductors & ICs, Software, Computer software / hardware, Computer software and hardware, Computer software / hardware, Computer software and hardware, Life cycle analysis, Safety regulations and standards
Read More >>

The Reality of Application Security: Scare Tactics or Genuine Threat?

Guardians of application security have perhaps become slightly immune to the fearful messages of cybersecurity vendors. The combination of ‘Big Data’ with an exponentially growing Internet of Things (IoT) would seem to provide the perfect storm conditions for the exploitation of vulnerable code streams. Read this whitepaper about the reality of AppSec to discover what are the real risks and how to mitigate them.

Posted in: White Papers, Automotive, Communications, Electronics & Computers, Information Sciences
Read More >>

PTC Heater Brings Greater Control for Hand-held Medical Devices and Disposables

Point of Care diagnostics devices, whether handheld or single-use, often require a brief application of tightly controlled heat. The disposable nature of these devices requires a low-cost component capable of delivering that heat reliably and safely. Heatron's new PTC heater solution uses a polymer-based heater technology that controls heat to within ±2°C of the target temperature, and reduces unit cost by eliminating sensors and applied controls.

Posted in: White Papers, Briefs, TSP, Electronics & Computers, Thermoelectrics, Medical, Medical equipment and supplies, Heating, ventilation, and air conditioning systems (HVAC), Heating, ventilation, and air conditioning systems (HVAC), Polymers
Read More >>

Introduction to Electromagnetic Compatibility

By definition, Electromagnetic Compatibility (EMC) describes the ability of a system, a piece of equipment, or some other electrical device that utilizes electromagnetic energy, to operate in its intended environment without suffering an unacceptable degradation in its performance, or negatively impacting the ability of another device to perform its intended function.

Posted in: White Papers, White Papers, Aeronautics, Defense, Electronics & Computers
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.