Method of Fault Detection and Rerouting

The technology can be used in wiring for aerospace, marine, automotive, industrial, and smart grid applications.

John F. Kennedy Space Center, Florida

NASA seeks partners interested in the commercial application of the In Situ Wire Damage Detection and Rerouting System (ISWDDRS). NASA’s Kennedy Space Center is soliciting licensees for this innovative technology. The ISWDDRS consists of a miniaturized inline connector containing self-monitoring electronics that use time domain reflectometry (TDR) to detect wire faults and determine fault type and fault location on powered electrical wiring. When a damaged or defective wire is identified, the system is capable of autonomously transferring electrical power and data connectivity to an alternate wire path. When used in conjunction with NASA’s wire constructions that use a conductive detection layer, the system is capable of detecting and limiting damage not only to the core conductor, but also to the insulation layer before the core conductor becomes compromised.

Posted in: Briefs, Electronics & Computers, Failure analysis, Sensors and actuators, Wiring, Sensors and actuators, Wiring

Metal Oxide Vertical Graphene Hybrid Supercapacitors

Ames Research Center, Moffett Field, California

NASA has developed a novel hybrid supercapacitor system utilizing vertical graphene as an electrode material grown directly on collector metals using a plasma enhanced chemical vapor de - position. Supercapacitors are an alternative to batteries for energy storage, offering high power density and rapid charging time. Nanomaterials such as carbon nanotubes and graphene offer high surface area and porosity to construct the electrodes. Vertical graphene grown directly on a collector metal substrate enables construction of a supercapacitor. The key to the hybrid supercapacitor technology is the growth of vertical graphene directly onto an inexpensive metal substrate without the use of bulk graphene, catalysts, or binders, resulting in increased power density. Adding the metal oxide or electrically conducting polymer to the vertical graphene adds redox (reduction and oxidation) capacitance, thus increasing the overall performance of the device.

Posted in: Briefs, Electronics & Computers, Energy storage systems, Ultracapacitors and supercapacitors, Energy storage systems, Ultracapacitors and supercapacitors, Metals, Nanomaterials

Reconfigurable Drive Current System

Marshall Space Flight Center, Alabama

NASA’s Marshall Space Flight Center (MSFC) has developed compact, reconfigurable electronic devices to drive and control avionics instruments. Typical avionics systems function through centralized power distribution units (PDUs), which have complex, expensive, and time-consuming design, development, test, and evaluation (DDT&E) cycles. To increase efficiency and lower design and implementation costs, the Standardized Multipurpose Avionics with Reconfigurable Technology (SMART) has been developed, replacing the PDU and sensor signal conditioning functions. By replacing the PDU, the system is able to process commands and condition signals at the application site, thus lowering system load. SMART can also be reconfigured for new tasks without changing hardware. This means functions can be added or changed later in the DDT&E cycle and even during integration, helping to reduce cost and schedule impact while enabling responsiveness to changing application needs.

Posted in: Briefs, Electronics & Computers, Avionics, Electronic control units, Avionics, Electronic control units, Maintainability and supportability

System and Method for Transferring Telemetry Data Between a Ground Station and a Control Center

Goddard Space Flight Center, Greenbelt, Maryland

The Lunar Reconnaissance Orbiter (LRO) employs many advanced innovations developed at NASA’s Goddard Space Flight Center and in collaboration with other organizations. The applications and benefits for these technologies are advantageous for many other industries as well. One of those technologies is the Space Link Extension Return Channel Frames (SLE-RCF) software library. This software library enables a mission control center to receive telemetry frames from a ground station. The technology implements the SLE-RCF protocol as defined by the Consultative Committee for Space Data Systems (CCSDS). Software routines can be reused from mission to mission.

Posted in: Briefs, Electronics & Computers, Electronics & Computers, Software, Communication protocols, Data exchange, Satellite communications, Telemetry, Communication protocols, Data exchange, Satellite communications, Telemetry

Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

NASA’s Jet Propulsion Laboratory, Pasadena, California

Radio telescopes that employ arrays of many antennas are in operation, and ever-larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas, N, the cost and power consumption of cross-correlation are proportional to N2, and dominate at sufficiently large N. As radio telescopes get larger, there is a need to provide digital-signal-processing electronics that are smaller and less power-hungry than would be implied by the extrapolation of existing designs.

Posted in: Briefs, Electronics & Computers, Software, Antennas, Integrated circuits, Radio equipment, Antennas, Integrated circuits, Radio equipment

Fabrication of Silicon-Leg Isolated Bi-Cr Thermopiles

Goddard Space Flight Center, Greenbelt, Maryland

The objective of this innovation was to develop a methodology of fabricating thermopile detectors using standard semiconductor fabrication techniques. The goal was to develop a fabrication process that minimized the roughening of the Si legs during patterning of the metallic couples, and to enable delineation of the Si legs without the use of highly toxic or carcinogenic chemicals. Another key requirement was at least 50% optical absorbance across the spectral band.

Posted in: Briefs, Electronics & Computers, Optics, Optics, Fabrication, Semiconductors, Silicon alloys

Current Source Logic Gate

John H. Glenn Research Center, Cleveland, Ohio

High-temperature electronic integrated circuits have been demonstrated in silicon carbide (SiC) depletion mode MESFETs. This process is only capable of producing depletion mode n-channel MESFET transistors. With only this type of transistor, designing a logic gate is a challenge. A previous logic gate design that can be constructed in the current process has performed well. This invention improves upon the previous design by increasing output voltage range and decreasing the physical layout size of a logic gate. This logic gate circuit consists of depletion mode MESFET/JFET transistors and resistors that can be constructed with SiC depletion mode n-channel MESFETs.

Posted in: Briefs, Electronics & Computers, Integrated circuits, Switches, Transistors, Integrated circuits, Switches, Transistors

Design of Double Layer Rectenna Array for Fault Isolation of Schottky Diode in Operation Beyond V-Band Frequencies

Langley Research Center, Hampton, Virginia

Microwave power transmission using rectenna technology has attracted a strong interest in conjunction with wireless electric power delivery to infrastructure and subjects located at a remote place. A typical rectenna, which is a major component of the wireless power transmission technology, consists of an antenna, a Schottky diode, and low-pass filters for low-frequency electromagnetic wave isolation in the device. To obtain high efficiency, an electromagnetic wave is collected through a high-resonance antenna, and the AC mode of coupled wave energy is delivered to a Schottky diode that rectifies AC power into DC power. By connecting rectennas in series or parallel, or in mixed way — as well as enlarging the receiving area — the rectenna array can capture microwave energy into a desirable mode of high power.

Posted in: Briefs, Electronics & Computers, Antennas, Capacitors, Antennas, Capacitors

High-Bandwidth, Wide Field-of-View, Ultra-Sensitive, Radiation-Hardened, Short-Wave Infrared (SWIR) Receiver

Goddard Space Flight Center, Greenbelt, Maryland

Every LiDAR design faces the classic balancing act of signal versus noise. In order to maximize the range of a LiDAR, a receiver must amplify fractions of a micro-amp of photo current into a usable range for signal processing to occur, but without adding significant amounts of noise. Additionally, LiDAR receiver designs must exhibit very wide dynamic ranges because of the uncertainty in return signal amplitude. Meeting all these requirements in a small size, weight, and power form factor while keeping costs low is a major challenge.

Posted in: Briefs, Electronics, Electronics & Computers, Amplifiers, Lidar, Amplifiers, Lidar, Noise, Noise

Magnetometer for Vectorized Field Sensing via Zero-Field, Spin-Dependent Recombination in Silicon Carbide Microelectronics

This self-calibrating, solid-state-based magnetometer is intended for miniaturized applications in high-temperature and high-radiation environments.

NASA’s Jet Propulsion Laboratory, Pasadena, California

The proposed technology involves the sensitive detection of magnetic fields using the zero-field, spin-dependent recombination (SDR) phenomenon that naturally arises from atomic-scale, deep-level defects intrinsic to silicon carbide (SiC) microelectronics. The SDR phenomenon enables the fabrication of SiC-based magnetic field sensing diodes that are ideal for the development of miniaturized and purely electrical-based magnetometers.

Posted in: Briefs, Electronics, Electronics & Computers, Microelectricmechanical device, Microelectromechanical devices, Microelectricmechanical device, Microelectromechanical devices, Magnetic materials, Test equipment and instrumentation

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.