Environment

Fast-Charging Batteries Have 20-Year Lifespan

Scientists at Nanyang Technology University (NTU) have developed ultra-fast charging batteries that can be recharged up to 70 percent in only two minutes.

The new-generation batteries also have a long lifespan of over 20 years, more than 10 times compared to existing lithium-ion batteries.

In the new NTU-developed battery, the traditional graphite used for the anode (negative pole) in lithium-ion batteries is replaced with a new gel material made from titanium dioxide. Titanium dioxide is an abundant, cheap and safe material found in soil.

Naturally found in spherical shape, the NTU team has found a way to transform the titanium dioxide into tiny nanotubes, which is a thousand times thinner than the diameter of a human hair. The development speeds up the chemical reactions taking place in the new battery, allowing for superfast charging. 

The breakthrough has a wide-ranging impact on all industries, especially for electric vehicles, where consumers are put off by the long recharge times and its limited battery life.

Source

Also: Learn about a Screening Technique for New Battery Chemistries.

Posted in: News, Batteries, Electronics & Computers, Power Management, Green Design & Manufacturing, Materials, Nanotechnology, Automotive, Transportation
Read More >>

NASA and Partners Use Sensing Technology to Target Megacities Carbon Emissions

The Megacities Carbon Project is an international, multi-agency pilot initiative to develop and test ways to monitor greenhouse gas emissions in megacities: metropolitan areas of at least 10 million people. Cities and their power plants are the largest sources of human-produced greenhouse gas emissions and are the largest human contributors to climate change.

Posted in: News, Aerospace, Environmental Monitoring, Green Design & Manufacturing, Greenhouse Gases, RF & Microwave Electronics, Sensors, Monitoring, Test & Measurement
Read More >>

3D Printer That Could Build a Home in 24 Hours Wins Global Design Competition

New York, NY – Contour Crafting, a computerized construction method that rapidly 3D prints large-scale structures directly from architectural CAD models, has been awarded the grand prize of $20,000 in the 2014 "Create the Future" Design Contest.

Contour Crafting automates the construction of whole structures and radically reduces the time and cost of construction. The large-scale 3D printing technology is revolutionary to the construction industry and could lead to affordable building of high-quality, low-income housing; the rapid construction of emergency shelters; and on-demand housing in response to disasters. NASA is looking at the technology for building moon and Mars bases.

Behrokh Khoshnevis, a professor at University of Southern California, who invented Contour Crafting, views this invention as a proven concept. “Bringing 3D printing to construction is bringing a concept to a proven application. For many years, building has been done in layers – concrete foundation blocks, brick laying, structural framing, etc.”

“I am very happy to receive this award and find it to be very timely as I am in the process of fund raising and I think this recognition will help me greatly in furthering the project,” said Khoshnevis.

Contour Crafting was among the 1,074 new product ideas submitted in the 12th annual design contest, which was established in 2002 to recognize and reward engineering innovations that benefit humanity, the environment, and the economy. This year’s design contest was co-sponsored by COMSOL (www.comsol.com) and Mouser Electronics (www.mouser.com). Analog Devices and Intel were supporting sponsors.

In addition to the grand prize of $20,000, first-place winners (of Hewlett-Packard workstations) were named in seven categories:

*Aerospace & Defense:

The Polariton Interferometer - a Novel Inertial Navigation System

Frederick Moxley

A stealth navigation system that provides precise course-plotting while operating independently from GPS.

*Automotive/Transportation:

Continuously Variable Displacement Engine

Steve Arnold

A continuously variable stroke engine that operates at 30% better fuel efficiency than conventional thick stroke engine designs.

*Consumer Products:

NanoFab Lab...in a Box!

Jonathan Moritz (Team Leader)

An educational kit that brings nanomanufacturing out of the cleanroom and into the classroom.

*Electronics:

A Paradigm Shift for SMT Electronics

Jim Hester (Team Leader)

Micro-coil springs that provide flexible electrical interconnections for integrated circuit packages, preventing connection breaks due to heat and vibration.

*Machinery/Automation/Robotics  – sponsored by Maplesoft:

Automatic Eye Finder & Tracking System

Rikki Razdan (Team Leader)

Real-time point-of-gaze eye tracking system that allows users to control computer input through "Look and Click" applications. 

*Medical:

HemeChip for Early Diagnosis of Sickle Cell Disease

Yunus Alapan (Team Leader)

A biochip that can rapidly, easily, and conclusively identify the hemoglobin type in blood to diagnose Sickle Cell Disease in newborns.

*Sustainable Technologies:

Ecovent Systems - Making Every Room the Right Temperature

Dipul Patel (Team Leader)

A system of wireless vents and sensors that makes any forced air heating and cooling system smarter by directing conditioned air where it’s needed most.

Finalists were selected by senior editors at Tech Briefs Media Group and judged by an independent panel of design engineers. Visitors to the contest Web site could vote on entries, with the 10 most popular designs awarded a Sphero mobile game system by Orbotix. For more information, visit www.createthefuturecontest.com.        

 

Posted in: News, Automotive, Electronic Components, Electronics & Computers, Green Design & Manufacturing, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Diagnostics, Medical, Nanotechnology, Automation, Semiconductors & ICs, Computer-Aided Design (CAD), Software
Read More >>

Water Splitter Runs on AAA Battery

Scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis.  The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron.

In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, an important industrial chemical.

Splitting water to make hydrogen requires no fossil fuels and emits no greenhouse gases. But scientists have yet to develop an affordable, active water splitter with catalysts capable of working at industrial scales.

"It's been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability," said Stanford University Professor Hongjie Dai. "When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise."

Source

Also: Learn about a Proton Exchange Membrane Fuel Cell.

Posted in: News, Batteries, Electronics & Computers, Power Management, Alternative Fuels, Energy, Green Design & Manufacturing, Materials, Metals
Read More >>

Physicists Create Water Tractor Beam

Physicists at The Australian National University have created a tractor beam on water, providing a radical new technique that could confine oil spills, manipulate floating objects or explain rips at the beach.

The group discovered they can control water flow patterns with simple wave generators, enabling them to move floating objects at will. Advanced particle tracking tools revealed that the waves generate currents on the surface of the water.

“We have figured out a way of creating waves that can force a floating object to move against the direction of the wave,” said Dr Horst Punzmann, from the Research School of Physics and Engineering, who led the project.

Source

Also: Learn about a Floating Oil-Spill Containment Device.

Posted in: News, Green Design & Manufacturing, Remediation Technologies
Read More >>

Hurricane-Tracking Unmanned Systems Win NASA Challenge

NASA has selected three winning designs solicited to address the technological limitations of the uncrewed aerial systems (UAS) currently used to track and collect data on hurricanes. Engineering teams at Virginia Polytechnic Institute and State University, Purdue University, and the University of Virginia were named first- through third-place winners, respectively, of the agency's 2013-2014 University Aeronautics Engineering Design Challenge.

Posted in: News, Aerospace, Aviation, Alternative Fuels, Environmental Monitoring, Automation, Robotics, Data Acquisition, Measuring Instruments, Monitoring, Test & Measurement
Read More >>

NASA’s High-Flying Laser Altimeter Measures Summer Sea Ice

When NASA launches the Ice, Cloud and land Elevation Satellite-2, or ICESat-2, in 2017, it will measure Earth’s elevation by sending out pulses of green laser light and timing how long it takes individual photons to bounce off Earth’s surface and return. The number and patterns of photons that come back depend on the type of ice they bounce off – whether it’s smooth or rough, watery or snow-covered.

To get a preview of what summertime will look like to ICESat-2, NASA scientists, engineers, and pilots have traveled to Fairbanks, Alaska, to fly an airborne test bed instrument called the Multiple Altimeter Beam Experimental Lidar, or MABEL. MABEL collects data in the same way that ICESat-2’s instrument will – with lasers and photon-detectors. The data from the Alaskan campaign will allow researchers to develop computer programs, or algorithms, to analyze the information from ICESat-2.

“We need to give scientists data to enable them to develop algorithms that work during summer,” said Thorsten Markus, ICESat-2’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “All the algorithms need to be tested and in place by the time of launch. And one thing that was missing was ICESat-2-like data on the summer conditions.”

Between July 12 and August 1, MABEL will fly aboard NASA’s high-altitude ER-2 aircraft as the Arctic sea ice and glaciers are melting. In its half-dozen flights, the instrument will take measurements of the sea ice and Alaska’s southern glaciers, as well as forests, lakes, open ocean, the atmosphere and more, sending data back to researchers on the ground.

Source

Also: Learn about the Debris & ICE Mapping Analysis Tool (DIMAT).

Posted in: News, Aerospace, Aviation, Electronics & Computers, Environmental Monitoring, Green Design & Manufacturing, Lasers & Laser Systems, Photonics, RF & Microwave Electronics, Data Acquisition, Measuring Instruments, Test & Measurement
Read More >>

Roof Tiles Clean the Air

A team of University of California, Riverside’s Bourns College of Engineering students has developed a titanium dioxide roof tile coating that removes up to 97 percent of smog-causing nitrogen oxides.

The students' calculations show that 21 tons of nitrogen oxides would be eliminated daily if tiles on one million roofs were coated with their titanium dioxide mixture.

The researchers coated two identical, off-the-shelf clay tiles with different amounts of titanium dioxide, a common compound found in everything from paint to food to cosmetics. The tiles were then placed inside a miniature atmospheric chamber that the students built out of wood, Teflon, and PVC piping.

The chamber was connected to a source of nitrogen oxides and a device that reads concentrations of nitrogen oxides. The students used ultraviolet light to simulate sunlight, which activates the titanium dioxide and allows it to break down the nitrogen oxides. They found the titanium dioxide coated tiles removed between 88 percent and 97 percent of the nitrogen oxides.

Source

Also: Learn about Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen.

Posted in: News, Green Design & Manufacturing, Remediation Technologies, Coatings & Adhesives, Materials, Test & Measurement
Read More >>

NASA Balloons Study Effects of Volcanic Eruption

A team of NASA and University of Wyoming scientists has ventured into the Australian bush to send a series of balloons aloft. The balloons will make measurements of a volcanic plume originating from neighboring Indonesia.

The campaign, in Australia’s Northern Territory, is part of an effort to better understand the climate effects of volcanic eruptions.

The KlAsh (Kelud Ash) experiment is based in Darwin, Australia, where smaller balloon payloads are being launched over the Indian Ocean. Larger balloons, with payloads that must be recovered, are being launched from Corroboree, a remote area about 60 miles south of Darwin.

The larger balloon, filled with helium, measures about 115 by 65 feet when fully inflated.

Almost all of the energy entering Earth’s climate system comes from the sun. Some of that energy is absorbed by the planet, while the rest is radiated back into space. Ash and sulfate reflect and absorb energy differently, and may also have different chemical impacts on the stratosphere.

“Understanding those characteristics is important for climate models that include periodic volcanic activity,” said Terry Deshler, principal investigator for the University of Wyoming’s instrumentation.

Source

Also: Learn about Targeting and Monitoring of Volcanic Activity.

Posted in: News, Environmental Monitoring, Green Design & Manufacturing, Monitoring, Test & Measurement
Read More >>

EZVI Technology Cleans Up Contaminants at Kennedy Space Center

Jacobs Engineering Group
Pasadena, CA
www.jacobs.com
CORE Engineering and Construction
Winter Park, FL
www.core-encon.com

A groundwater technology developed at Kennedy Space Center was used to treat subsurface contaminants near one of the center’s buildings: the Reutilization, Recycling and Marketing Facility (RRMF).

Posted in: Application Briefs, Green Design & Manufacturing, Ground support, Chemicals, Hazardous materials
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.