Health, Medicine, & Biotechnology

Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

Improved polymer hydrophilicity is beneficial for cell culturing and implant growth.

The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer’s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers.

Posted in: Briefs, MDB, TSP, Briefs, TSP, Coatings & Adhesives, Materials, Bio-Medical, Medical, Medical equipment and supplies, Materials properties, Oxygen, Polymers
Read More >>

Open-Access, Low-Magnetic-Field MRI System for Lung Research

An open-access magnetic resonance imaging (MRI) system is being developed for use in research on orientational/ gravitational effects on lung physiology and function. The open-access geometry enables study of human subjects in diverse orientations. This system operates at a magnetic flux density, considerably smaller than the flux densities of typical other MRI systems, that can be generated by resistive electromagnet coils (instead of the more-expensive superconducting coils of the other systems).

Posted in: Briefs, MDB, Briefs, Bio-Medical, Diagnostics, Medical
Read More >>

Microfluidic Mixing Technology for a Universal Health Sensor

A highly efficient means of microfluidic mixing has been created for use with the rHEALTH sensor — an elliptical mixer and passive curvilinear mixing patterns. The rHEALTH sensor provides rapid, handheld, complete blood count, cell differential counts, electrolyte measurements, and other lab tests based on a reusable, flow-based microfluidic platform.

Posted in: Briefs, MDB, Briefs, Bio-Medical, Medical, Sensors
Read More >>

Microwell Arrays for Studying Many Individual Cells

“Laboratory-on-a-chip” devices that enable the simultaneous culturing and interrogation of many individual living cells have been invented. Each such device includes a silicon nitride-coated silicon chip containing an array of micromachined wells sized so that each well can contain one cell in contact or proximity with a patch clamp or other suitable single-cell-interrogating device. At the bottom of each well is a hole, typically ≈ 0.5 μm wide, that connects the well with one of many channels in a microfluidic network formed in a layer of poly(dimethylsiloxane) on the underside of the chip. The microfluidic network makes it possible to address wells (and, thus, cells) individually to supply them with selected biochemicals. The microfluidic channels also provide electrical contact to the bottoms of the wells.

Posted in: Briefs, MDB, Briefs, Bio-Medical, Medical, Patient Monitoring
Read More >>

Convergence Nanoparticles for Multi-Modal Biomedical Imaging

This technique enables detection, sensing, navigation, and actuation in a single nanosystem.

A project is underway to develop a novel, versatile, multi-functional convergence nanoparticle system that utilizes inorganic nanoparticles for advanced biomedical applications. Inorganic nanoparticles exhibit improved optical, magnetic, and electronic properties compared to classical bulk materials, making them useful as key components for futuristic nano-device applications.

Posted in: Briefs, MDB, TSP, Briefs, TSP, Coatings & Adhesives, Materials, Bio-Medical, Diagnostics, Medical, Imaging, Imaging and visualization, Imaging, Imaging and visualization, Medical equipment and supplies, Materials properties, Nanotechnology
Read More >>

Trans-Skull Ultrasound Scanner for Diagnosis of Rhino-Sinusitis

This system eliminates the need for CT or x-ray imaging.

Rhino-sinusitis, or sinus infection, is an inflammation of the paranasal sinuses, which can be caused by different conditions (bacterial, fungal, viral, allergic, or autoimmune). Bacterial rhino-sinusitis is currently assessed by puncture or imaging techniques (x-ray or CT) in order to detect the presence of an air-fluid level within the paranasal sinuses. The absence of this level is significant enough to rule out bacterial infection. The system presented in this innovation provides a reliable, non-invasive, and low-cost procedure to evaluate the presence of fluid inside the paranasal sinuses by means of an ultrasound scan.

Posted in: Briefs, MDB, Briefs, Bio-Medical, Diagnostics, Medical, Imaging, Imaging and visualization, Imaging, Imaging and visualization, Bacteria, Diagnosis, Diseases, Medical equipment and supplies, Acoustics, Acoustics
Read More >>

Microfluidic Extraction of Biomarkers Using Water as Solvent

Terahertz modulation of permittivity of water would enable solvation of molecules of interest.

A proposed device, denoted a miniature microfluidic biomarker extractor (μ-EX), would extract trace amounts of chemicals of interest from samples, such as soils and rocks. Traditionally, such extractions are performed on a large scale with hazardous organic solvents; each solvent capable of dissolving only those molecules lying within narrow ranges of specific chemical and physical characteristics that notably include volatility, electric charge, and polarity. In contrast, in the μ-EX, extractions could be performed by use of small amounts (typically between 0.1 and 100 μL) of water as a universal solvent.

Posted in: Briefs, MDB, Briefs, Electronics, Electronics & Computers, Bio-Medical, Medical, Patient Monitoring, Soils, Water, Chemicals, Test equipment and instrumentation
Read More >>

Identifying and Inactivating Bacterial Spores

Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment.

Posted in: Briefs, MDB, Briefs, Bio-Medical, Medical, Patient Monitoring
Read More >>

Crashworthy Seats Would Afford Superior Protection

Adjustments enable optimization of support for different body sizes and shapes.

Seats to prevent or limit crash injuries to astronauts aboard the crew vehicle of the Orion spacecraft are undergoing development. The design of these seats incorporates and goes beyond crash-protection concepts embodied in prior spacecraft and racing-car seats to afford superior protection against impacts. Although the seats are designed to support astronauts in a recumbent, quasi-fetal posture that would likely not be suitable for non-spacecraft applications, parts of the design could be adapted to military and some civilian aircraft seats and to racing-car seats to increase levels of protection.

Posted in: Briefs, MDB, TSP, Briefs, TSP, Manufacturing & Prototyping, Bio-Medical, Medical, Seats and seating, Seats and seating, Crashworthiness, Occupant protection, Spacecraft
Read More >>

Droplet-Based Production of Liposomes

A process for making monodisperse liposomes having lipid bilayer membranes involves fewer, simpler process steps than do related prior methods. First, a microfluidic, cross-junction droplet generator is used to produce vesicles comprising aqueous-solution droplets contained in single-layer lipid membranes. The vesicles are collected in a lipid-solvent mix that is at most partially soluble in water and is less dense than is water. A layer of water is dispensed on top of the solvent. By virtue of the difference in densities, the water sinks to the bottom and the solvent floats to the top. The vesicles, which have almost the same density as that of water, become exchanged into the water instead of floating to the top. As there are excess lipids in the solvent solution, in order for the vesicles to remain in the water, the addition of a second lipid layer to each vesicle is energetically favored.

Posted in: Briefs, MDB, Briefs, Manufacturing & Prototyping, Coatings & Adhesives, Materials, Bio-Medical, Medical
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.