Health, Medicine, & Biotechnology

Sensitive, Rapid Detection of Bacterial Spores

This capability is beneficial for medicine, public health, and biowarfare defense.

A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries.

Posted in: Briefs, Bio-Medical, Medical, Bacteria, Medical, health, and wellness, Reaction and response times, Test equipment and instrumentation

Adenosine Monophosphate-Based Detection of Bacterial Spores

AMP is released by means of heat shock, then detected via bioluminescence.

A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 °C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity.

Posted in: Briefs, Bio-Medical, Medical, Bacteria, Biological sciences, Test procedures

Detecting Phycocyanin-Pigmented Microbes in Reflected Light

Concentrations are estimated from ratios between spectral radiances.

A recently invented method of measuring concentrations of phycocynanin- pigmented algae and bacteria in water is based on measurement of the spectrum of reflected sunlight. When present in sufficiently high concentrations, phycocynanin- pigmented microorganisms can be hazardous to the health of humans who use, and of animals that depend on, an affected body of water. The present method is intended to satisfy a need for a rapid, convenient means of detecting hazardous concentrations of phycocynanin-pigmented microorganisms. Rapid detection will speed up the issuance of public health warnings and performance of corrective actions.

Posted in: Briefs, TSP, Bio-Medical, Medical, Environmental testing, Water quality, Test procedures

Expert System Control of Plant Growth in an Enclosed Space

An adjustable environment optimizes growth while minimizing consumption of resources.

The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term “control” implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment.

Posted in: Briefs, Bio-Medical, Medical, Computer software / hardware, Computer software and hardware, Computer software / hardware, Computer software and hardware, Biological sciences

Purifying Nucleic Acids From Samples of Extremely Low Biomass

A new method is able to circumvent the bias to which one commercial DNA extraction method falls prey with regard to the lysing of certain types of microbial cells, resulting in a truncated spectrum of microbial diversity. By prefacing the protocol with glass-bead-beating agitation (mechanically lysing a much more encompassing array of cell types and spores), the resulting microbial diversity detection is greatly enhanced.

Posted in: Briefs, Bio-Medical, Medical, Biological sciences, Test procedures

Adjustable-Viewing-Angle Endoscopic Tool for Skull Base and Brain Surgery

Surgeons could operate more precisely.

The term “Multi-Angle and Rear Viewing Endoscopic tooL” (MARVEL) denotes an auxiliary endoscope, now undergoing development, that a surgeon would use in conjunction with a conventional endoscope to obtain additional perspective. The role of the MARVEL in endoscopic brain surgery would be similar to the role of a mouth mirror in dentistry. Such a tool is potentially useful for in-situ planetary geology applications for the close-up imaging of unexposed rock surfaces in cracks or those not in the direct line of sight.

Posted in: Briefs, TSP, Bio-Medical, Medical, Medical equipment and supplies, Surgical procedures

UV-Resistant Non-Spore-Forming Bacteria From Spacecraft-Assembly Facilities

Four species of non-spore-forming bacteria collected from clean-room surfaces in spacecraft-assembly facilities could survive doses of ultraviolet (UV) radiation that would suffice to kill most known cultivable bacterial species. In a previous study, high UV resistance was found in spores of the SAFR-032 strain of Bacillus pumilus, as reported in “Ultraviolet-Resistant Bacterial Spores,” NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 94. These studies are parts of a continuing effort to understand the survival of hardy species of bacteria under harsh conditions, and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could in turn interfere with future life detection missions.

Posted in: Briefs, Bio-Medical, Medical, Environmental protection, Bacteria, Assembling, Radiation

Using Electronic Noses To Detect Tumors During Neurosurgery

Sensors would help surgeons determine whether tumors have been removed completely.

It has been proposed to develop special-purpose electronic noses and algorithms for processing the digitized outputs of the electronic noses for determining whether tissue exposed during neurosurgery is cancerous. At present, visual inspection by a surgeon is the only available intraoperative technique for detecting cancerous tissue. Implementation of the proposal would help to satisfy a desire, expressed by some neurosurgeons, for an intraoperative technique for determining whether all of a brain tumor has been removed. The electronic-nose technique could complement multimodal imaging techniques, which have also been proposed as means of detecting cancerous tissue. There are also other potential applications of the electronic-nose technique in general diagnosis of abnormal tissue.

Posted in: Briefs, TSP, Bio-Medical, Medical, Mathematical models, Sensors and actuators, Sensors and actuators, Diagnosis, Diseases, Nervous system, Surgical procedures

Producing Newborn Synchronous Mammalian Cells

This invention could be used to study aging and cancer.

A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

Posted in: Briefs, TSP, Bio-Medical, Medical, Biological sciences, Fabrication, Pharmaceuticals, Test equipment and instrumentation, Test procedures

Biochips Containing Arrays of Carbon-Nanotube Electrodes

Small quantities of biomarkers could be detected rapidly, with simplified preparation.

Biochips containing arrays of nanoelectrodes based on multiwalled carbon nanotubes (MWCNTs) are being developed as means of ultrasensitive electrochemical detection of specific deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) biomarkers for purposes of medical diagnosis and bioenvironmental monitoring. In mass production, these biochips could be relatively inexpensive (hence, disposable). These biochips would be integrated with computer-controlled microfluidic and microelectronic devices in automated hand-held and bench-top instruments that could be used to perform rapid in vitro genetic analyses with simplified preparation of samples.

Posted in: Briefs, TSP, Bio-Medical, Medical, Integrated circuits, Integrated circuits, Biological sciences, Fabrication, Nanotechnology, Test equipment and instrumentation

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.