Materials & Coatings

Preparation of Metal Nanowire Decorated Carbon Allotropes

This technology produces materials for a variety of applications in electronics, communications, catalysis, and optics.

NASA's Langley Research Center has created a new class of materials based on depositing nanometer-sized metal particles onto carbon allotropes. The method is scalable and relatively simple, and allows for control over the size and distribution of the metal particles in the substrate, adjusting the surface area to optimize specific thermal or electrical properties of the material. One promising nanocomposite material created consists of multi-walled carbon nanotubes (MWCNTs) decorated with metal particles dispersed in a polymer matrix. Ribbons, tubes, and moldings of the nanocomposite were found to have novel intrinsic electrical characteristics that enable tunable dielectric constants with low loss factors. The decoupling and independent control of the two fundamental parameters offer a class of materials with the potential for finely tailored electronic properties. The novel methods enable materials that show promise for a variety of applications in electronics, communications, catalysis, and optics.

Posted in: Briefs, Materials, Product development, Fabrication, Composite materials, Metals, Nanomaterials
Read More >>

In Situ Mechanical Property Measurements of Amorphous Carbon-Boron Nitride Nanotube Nanostructures

Utilizing the full mechanical capabilities of individual nanotubes is a primary research goal in nanotube reinforced nanocomposite materials. Practical use of these nanomaterials requires creating stable and strong linkages between nanotubes without sacrificing their mechanical advantage. Cross-linking between shells via electron beam irradiation and application of large compressive forces have been studied and offer a viable approach to improve tube-to-tube load transfer and hence, mechanical properties. However, these approaches result in unwanted mechanical degradation and have limitations in scale-up for their applications to macroscopic nanocomposite materials.

Posted in: Briefs, Materials, Architecture, Architecture, Composite materials, Nanomaterials
Read More >>

Negative Dielectric Constant Material Based on Ion Conducting Materials

NASA Langley Research Center has developed a novel negative dielectric constant material based on ion-conducting materials. A negative dielectric constant material is an essential key for creating metamaterials, or artificial negative index materials (NIMs). NIMs have generated great attention due to their unique and exotic electromagnetic properties, and could be used for unique optical and microwave applications, including new methods of electromagnetic cloaking and extremely lowloss communications.

Posted in: Briefs, Materials, Electromagnetic compatibility, Electromagnetic compatibility, Product development, Conductivity
Read More >>

Non-Toxic Material Generates Electricity Through Heat, Cold Air

Imagine a body sensor powered by one's jewelry, or a cooking pan that charges a cell phone in a few hours.

Using a combination of the chemical elements calcium, cobalt, and terbium, University of Utah researchers created an efficient, inexpensive and bio-friendly material that generates electricity through a thermoelectric process involving heat and cold air.

Posted in: News, Materials, Sensors
Read More >>

Researchers Craft New Material That Could Improve LED Screens

Researchers working at the Ultrafast Laser Lab at the University of Kansas successfully created a new bilayer material, with each layer measuring less than one nanometer in thickness. The new material, that someday could lead to more efficient and versatile light emission, was made by combining atomically thin layers of molybdenum disulfide and rhenium disulfide.

Posted in: News, ptb catchall, LEDs, Powering & Controlling LEDs, Materials, Optical Components, Optics, Photonics
Read More >>

Researchers Find 'Golden' Idea for New Wearables

Researchers at Missouri University of Science and Technology have developed a way to “grow” thin layers of gold on single crystal wafers of silicon, remove the gold foils, and use them as substrates on which to grow other electronic materials. The discovery could lead to new wearable developments, including a smartphone that conforms entirely to one's wrist.

Posted in: News, Materials
Read More >>

The Ultimate Tool for Characterizing Materials during Mechanical Tests and Validating FEA during Component Tests

The Digital Image Correlation Technology (DIC) is a non-contact 3D measurement tool that measures deformation and strain during material testing. DIC is a single system that replaces strain gages, accelerometers, LVDT’s, string potentiometers, extensometers, laser trackers, and surface scanners. The results are full field, and presented as an experimental representation of a finite model.

Posted in: On-Demand Webinars, Materials
Read More >>

Temperature-Regulating Fabrics Keep Babies Comfortable

Materials designed for spacesuits now regulate heat in baby clothes and blankets.

Spinoff is NASA's annual publication featuring successfully commercialized NASA technology. This commercialization has contributed to the development of products and services in the fields of health and medicine, consumer goods, transportation, public safety, computer technology, and environmental resources.

Posted in: Articles, Materials, Human factors, Infants, Thermal management, Thermal management, Fabrics
Read More >>

The Heavy Impact of Advanced Lightweight Materials

Historically, high-strength materials have been heavy and dense. The need for high-strength but lightweight materials has become more widespread when designing everything from vehicles and aircraft, to buildings and wind turbines. These advanced materials are enabling engines to operate efficiently at higher temperatures, use less fuel, and emit fewer pollutants, as well as finding uses in many other applications.

Posted in: Articles, Materials, Technical reference, Technical review, Lightweight materials, Durability, Durability
Read More >>

'Tougher-than-Metal' Hydrogels Support New Biomaterials

Scientists from Japan's Hokkaido University have created tough hydrogels combined with woven fiber fabric. The "fiber-reinforced soft composite" fabrics are highly flexible, stronger than metals, and can support a number of potential applications, including artificial ligaments and tendons subjected to load-bearing tension.

Posted in: News, Materials
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.