Mechanical & Fluid Systems

Rotating Vessels for Growing Protein Crystals

Rotation would ameliorate adverse effects of gravitation.

Rotating vessels have been proposed as means of growing larger, more nearly uniform protein crystals than would otherwise be possible in the presence of normal Earth gravitation. Heretofore, nonrotating vessels have been used.

Posted in: Briefs, Mechanical Components, Mechanics, Research and development, Materials properties

Tool Measures Depths of Defects on a Case Tang Joint

Precise measurements can be made consistently.

A special-purpose tool has been developed for measuring the depths of defects on an O-ring seal surface. The surface lies in a specially shaped ringlike fitting, called a “capture feature tang,” located on an end of a cylindrical segment of a case that contains a solid-fuel booster rocket motor for launching a space shuttle. The capture feature tang is a part of a tang-and-clevis, O-ring joint between the case segment and a similar, adjacent cylindrical case segment. When the segments are joined, the tang makes an interference fit with the clevis and squeezes the O-ring at the side of the gap.

Posted in: Briefs, Mechanical Components, Mechanics, Finite element analysis, Measurements, Tools and equipment, Seals and gaskets, Booster rocket engines

Stability-Augmentation Devices for Miniature Aircraft

Passive mechanical devices help miniature aircraft fly in adverse weather.

Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft.

Posted in: Briefs, Mechanical Components, Mechanics, Stability control, Weather and climate, Aerodynamics, Unmanned aerial vehicles

Lifting Mechanism for the Mars Explorer Rover

A report discusses the design of a rover lift mechanism (RLM) — a major subsystem of each of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. The RLM had to satisfy requirements to (1) be foldable as part of an extremely dense packing arrangement and (2) be capable of unfolding itself in a complex, multistep process for disengaging the rover from its restraints in the lander, lifting the main body of the rover off its landing platform, and placing the rover wheels on the platform in preparation for driving the rover off the platform. There was also an overriding requirement to minimize the overall mass of the rover and lander. To satisfy the combination of these and other requirements, it was necessary to formulate an extremely complex design that integrated components and functions of the RLM with those of a rocker-bogie suspension system, the aspects of which have been described in several prior NASA Tech Briefs articles. In this design, suspension components also serve as parts of a 4- bar linkage in the RLM.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Landing gear, Packaging, Entry, descent, and landing, Spacecraft

System Regulates the Water Contents of Fuel-Cell Streams

An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.

Posted in: Briefs, Mechanical Components, Mechanics, Water, Fuel cells

Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig

Higher-order vibrational modes can be excited and higher rotational speeds attained.

The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig (see figure) includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Magnetic materials, Vibration, Vibration, Bearings, Test equipment and instrumentation

Rugged Iris Mechanism

Advantages include capability for full obscuration, low friction, and general adaptability of design.

A rugged iris mechanism has been designed to satisfy several special requirements, including a wide aperture in the “open” position, full obscuration in the “closed” position, ability to function in a cryogenic or other harsh environment, and minimization of friction through minimization of the number of components. An important element of the lowfriction aspect of the design is maximization of the flatness of, and provision of small gaps between, adjacent iris blades. The tolerances of the design can be very loose, accommodating thermal expansions and contractions associated with large temperature excursions. The design is generic in that it is adaptable to a wide range of aperture sizes and can be implemented in a variety of materials to suit the thermal, optical, and mechanical requirements of various applications.

Posted in: Briefs, Mechanical Components, Mechanics, Design processes, Optics, Optics, Thermodynamics, Thermodynamics, Parts

Alignment Stage for a Cryogenic Dilatometer

A low-friction, low-thermal-expansion kinematic design affords stability and precise adjustability.

A three degree of freedom alignment stage has been designed and built for use in a cryogenic dilatometer that is used to measure thermal strains. The alignment stage enables precise adjustments of the positions and orientations of optical components to be used in the measurements and, once adjustments have been completed, keeps the components precisely aligned during cryogenic dilatometer operations that can last as long as several days.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Calibration, Heat resistant alloys, Test equipment and instrumentation, Thermal testing

Variable-Pressure Washer

Clamping force would be applied in a specified nonuniform pattern.

The variable-pressure washer (VPW) is a proposed device that is so named because (1) it would play the role similar to that played by an ordinary washer, except that (2) the clamping pressure applied by it would vary with either circumferential or radial position. In a typical contemplated application, the radially varying clamping pressure would be used to obtain more nearly uniform compression on a pair of concentric seals (e.g., an O-ring or a gasket) in an assembly that experiences larger deformations normal to the sealing surface for locations around the outer diameter of the attachment flange when compared to locations around the inner diameter.

Posted in: Briefs, Mechanical Components, Mechanics, Tools and equipment, Fittings, Seals and gaskets

Rotating Desk for Collaboration by Two Computer Programmers

Two programmers can work together or alternately with minimal stress.

A special-purpose desk has been designed to facilitate collaboration by two computer programmers sharing one desktop computer or computer terminal. The impetus for the design is a trend toward what is known in the software industry as extreme programming — an approach intended to ensure high quality without sacrificing the quantity of computer code produced. Programmers working in pairs is a major feature of extreme programming.

Posted in: Briefs, Mechanical Components, Mechanics, Design processes, Collaboration and partnering, Product development

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.