Mechanical & Fluid Systems

BiBlade Sampling Chain

This tool enables multiple sampling attempts per sample.

The BiBlade sampler has been developed for potentially acquiring samples from the surface of a planetary body. The tool could conceivably be used in both in situ and notional sample return missions to planetary bodies including asteroids, comets, and moons. While the tool was designed for planetary sampling missions, it could have terrestrial applications as well.

Posted in: Briefs, Mechanical Components, Test equipment and instrumentation, Spacecraft
Read More >>

Micro Acoustic Resonant Chambers for Heating/Agitating/Mixing (MARCHAM)

This device can be used for extracting amino acids in microfluidic or benchtop designs, and could be scaled up to accommodate large samples for mixing and extraction.

To measure organics in a fluid sample, one either has to bring the sample in the form of a colloid to the instrument, or extract the organics from the sample and bring the liquid extract to the instrument. The disclosed technique enables both extraction and transport of the fines or the organics.

Posted in: Briefs, Mechanical Components, Measurements, Acoustics, Acoustics, Test equipment and instrumentation
Read More >>

Advanced Tool Drive System (ATDS) Camera Positioning Mechanism (CPM)

Robotic servicing of a satellite in low earth orbit (LEO) or geosynchronous Earth orbit (GEO) requires advanced systems capable of meeting the harsh environments of space. To support this effort, the Goddard Space Flight Center Satellite Servicing Capabilities Office (SSCO) has developed a camera positioning mechanism that will be capable of viewing features on a client satellite. Application of the CPM technology would be in multiple areas of spaceflight requiring robotic servicing including space exploration, planetary science, Earth science, and manned spaceflight.

Posted in: Briefs, Mechanical Components, Motion Control, Motors & Drives, Positioning Equipment, Optics, Optics, Maintenance, Repair and Service Operations, Maintenance, repair, and service operations, Robotics, Satellites
Read More >>

Compact, Lightweight Trap Vent

This compact, lightweight trap vent is used to minimize the pressure differential of a high-altitude, balloon-borne detector. The vent allows the pressure to equalize rapidly, yet does not allow any light to enter the detector.

Posted in: Briefs, Mechanical Components, Gases, Exhaust valves, Test equipment and instrumentation
Read More >>

Robust, Highly Efficient Oxygen-Carbon Monoxide Cogeneration System

This system can be used for greenhouse gas reduction, and in the steel, medical, and welding industries.

Oxygen, water, and fuel are of paramount importance to human life. As a leading concept, the solid-oxide electrolysis cell (SOEC) is a very powerful technology, especially in aiding NASA's endeavors to pursue extraterrestrial exploration missions. This work focused on developing a robust, long-life SOEC technology that efficiently cogenerates oxygen and CO fuel directly from CO2, and is superior to the state-of-the-art Oxygen-Generation System (OGS) technologies. The principal objective of the project was to develop the system to support Mars exploration missions as part of In-Situ Resource Utilization. The key problem characteristics were the SOEC performance and longevity under various operating conditions. The prior art was built on a thick electrolyte-supported SOEC using precious metals as electrodes. Due to the nature of SOEC operating mechanisms, high pressures may build up at the interfaces of the positive electrode and the electrolyte, resulting in electrode delamination and long-term stability issues. The state-of-the-art SOEC technology also faced the scaling up and stack sealing issues.

Posted in: Briefs, Mechanical Components, Carbon dioxide, Life support systems, Research and development, Oxygen
Read More >>

Low Solidity Vaned Diffuser (LSVD) Design for Improvement of Pressure Recovery

Many pump vaned diffuser designs are based on existing airfoil designs, with little attention given to the vane leading edge. There is a need for a vaned diffuser leading edge that helps resist flow separation and the resultant poor diffuser pressure recovery. Diffusers in pumps are often working with an incompressible fluid that makes potential flow methodologies — which have incompressibility as a boundary condition — attractive. The potential flow-based free-streamline analysis methods have been known to improve the aerodynamics of varied components at high incidence angles, such as diffusers, jet engine nacelles, and liquid rocket engine turbopump inducers.

Posted in: Briefs, Mechanical Components, Airframes, Pumps, Aerodynamics
Read More >>

Tangential Wrap Rib Deployable Reflector

The reflector does not use complicated deployment mechanisms.

There is a need for a large deployable reflector of 2-meter diameter or greater so smaller launch vehicles can be used. Common issues with going from a large solid reflector into deployable structures are the structural stiffness and deployable structure complexity.

Posted in: Briefs, Mechanical Components, Antennas, Antennas, Product development, Storage, Launch vehicles
Read More >>

Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

The design is highly modular, and can easily be adapted to other vehicles/modules and alternate commodity sets.

The Orion Crew-Service Module (CM/SM) umbilical retention and release mechanism supports, protects, and disconnects all of the cross-module commodities between the spacecraft's crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. Initial development testing of the mechanism's separation interface resulted in binding failures due to connector misalignments. Separation of the umbilical lines between the Crew Module (CM) and the Service Module (SM) happens as part of the vehicle separation activities prior to reentry. If the umbilical fails to separate successfully, the crew and spacecraft will likely be lost.

Posted in: Briefs, Mechanical Components, Mechanics, Architecture, Architecture, Fasteners, Entry, descent, and landing, Spacecraft
Read More >>

Micro-Lid for Sealing a Sample Reservoir for Micro-Extraction Systems

Improved micro-extraction systems could be useful for military remote sensing using microfluidics.

Great strides are taken to miniaturize spaceflight instrumentation, particularly analytical systems such as liquid chromatographs, gas chromatographs, and mass spectrometers. With miniaturization of instruments, large amounts of samples are no longer required. Therefore, a lesser quantity of sample from the environment needs to be acquired and extracted. Current practices of sample extraction are large in volume and consume an enormous amount of power, which is inconsistent for microfluidic instruments in development. These consume minute amounts of power and are of low mass. There have been efforts to create micro-sample extraction systems; however, a downfall of those systems is the inability to automatically close sample reservoirs.

Posted in: Briefs, Mechanical Components, Mechanics, Containers, Seals and gaskets, Test equipment and instrumentation, Spacecraft
Read More >>

Single-Fluid-Pumped Radiators with Increased Turn-Down Ratio and Control in the Stagnation Regime

The system trades mass-optimized heat rejection for a human-rated, single-fluid pumped system of greater heat rejection range and passive control.

Fluid-pumped radiators are used to reject heat from structures to space. A fluid travels inside the structure to collect heat, and then travels external to the structure through radiators where the heat is rejected to space via radiation heat transfer. A radiator is essentially several tubes attached to a thermally conducting plate or face sheet. The fluid cools as it travels along the inside of the tubes, and then returns to the inside of the structure to repeat the heat rejection cycle. If the structure contains humans, the fluid in the structure must be nontoxic and nonflammable. Further, as space can be extremely cold (4 K), the fluid external to the structure may freeze, particularly during low-power operations where heat rejection needs are minimal. Freezing of the fluid renders the radiator inoperable, and unfreezing a radiator can be very difficult, power-intensive (i.e. heaters), and/or timely. For these reasons, two fluids may be used: one inside that is compatible with humans (e.g. water), and one outside that has a low freezing point (e.g. ammonia). The heat is then transferred from the inner loop to the external loop through a heat exchanger. This dual-loop system is more complex and heavier than a single-loop system. However, as the outer loop does not freeze as easily, the dual-loop radiator system can be operated at lower heat rejection loads, increasing its overall heat rejection range (or turn-down ratio) over that of the single-loop system.

Posted in: Briefs, Mechanical Components, Mechanics, Heat exchangers, Heat transfer, Heat exchangers, Heat transfer, Radiators
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.