Motion Control

LAPP PLAYBOOK — Next Generation Cables For Factory Automation

Achieving maximum productivity and minimizing downtime are critical in production line equipment or any automation applications.

Posted in: White Papers, Aerospace, Defense, Mechanical Components, Mechanics, Motion Control

Mechanical Metamaterials Can Block Symmetry of Motion

Engineers and scientists at the University of Texas at Austin and the AMOLF institute in the Netherlands have invented mechanical metamaterials that transfer motion in one direction while blocking it in the other. The material can be thought of as a mechanical one-way shield that blocks energy from coming in but easily transmits it going out the other side. The researchers developed the mechanical materials using metamaterials, which are synthetic materials with properties that cannot be found in nature.

Posted in: News, Materials, Motion Control

Magnetic Motor-Feedback Kits – A New Way to Improve Performance and Reduce Costs

Today’s motor-feedback systems generally fall into one of two categories: high performance and very expensive or low cost, but lacking performance and features.

Posted in: On-Demand Webinars, Motors & Drives, Sensors

Three-Phase Power Conversion in a Single Step

Marotta Controls is revolutionizing power conversion with 1-STEP, a patent-pending circuit solution that uniquely achieves three-phase active power factor correction, power regulation and electrical isolation in a single conversion step.

Posted in: White Papers, Defense, Electronics & Computers, Motion Control

Exo-Brake “Parachute” to Enable Safe Return for Small Spacecraft

Engineers at NASA’s Ames Research Center in Moffett Field, CA have been testing its Exo-Brake technology as a simple design that promises to help bring small payloads back through Earth’s atmosphere unharmed. An Exo-Brake is a tension-based, flexible braking device resembling a cross-parachute that deploys from the rear of a satellite to increase the drag. It is a de-orbit device that replaces the more complicated rocket-based systems that would normally be employed during the de-orbit phase of re-entry.

Posted in: News, Aerospace, Motion Control

Six-Legged Robots Move Faster with Bipod Gate

Researchers in Lausanne, Switzerland have determined that a bipod gait is the fastest and most efficient way for six-legged robots to move on flat ground, provided they don’t have the adhesive pads used by insects to climb walls and ceilings. This suggests designers of insect-inspired robots should make a break with the nature-inspired tripod-gait paradigm.

Posted in: News, Motion Control, Robotics

Evaluation Standard for Robotic Research

Universal benchmarks can standardize the measurement of robotic manipulation tasks.

The Yale-CMU-Berkeley (YCB) Object and Model Set provides universal benchmarks for labs specializing in robotic manipulation and prosthetics. About two years ago, Aaron Dollar, an associate professor of mechanical engineering and materials science at Yale University, came up with the benchmark idea to bring a level of specificity and universality to manipulation tasks in robotics research. He enlisted the help of two former colleagues in the robotics community, Dr. Siddhartha Srinivasa from Carnegie-Mellon University and Dr. Pieter Abbeel of the University of California, Berkeley.

Posted in: Briefs, Motion Control, Automation, Kinematics, Research and development, Robotics, Quality standards, Quality standards, Biomechanics

The Basics of Encoder Selection

Many small motor applications, such as robotics, industrial equipment, and consumer products, employ digital incremental encoders for feedback sensing. Encoder selection is therefore an important part of the system design process. Choosing the best encoder for the job requires knowledge of the most important encoder properties as well as the application’s control requirements.

Posted in: Articles, Motion Control, Electronic control systems, Integrated circuits, Electronic control systems, Integrated circuits, Supplier assessment

Servo Couplings for High-Tech Systems

Proper coupling ensures a design will meet performance requirements and have a long, trouble-free life.

Couplings are a critical part of system performance in high-tech applications, yet they are often one of the last components to be specified. Selecting the proper coupling ensures the equipment will meet performance requirements and have a long, trouble-free life. Poor coupling selection can lead to high maintenance costs, frequent downtime, and imprecise positioning.

Posted in: Articles, Joining & Assembly, Motion Control, Power Transmission, Sensors and actuators, Sensors and actuators, Materials properties, Fittings, Parts

Metallic Glass Shatters Gear Limitations

Gears play an essential role in precision robotics, and they can become a limiting factor when the robots must perform in space missions. In particular, the extreme temperatures of deep space pose numerous problems for successful gear operation. At NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA, technologist Douglas Hofmann and his collaborators aim to bypass the limitations of existing steel gears by creating gears from bulk metallic glass (BMG).

Posted in: Articles, Aerospace, Manufacturing & Prototyping, Metals, Mechanical Components, Motion Control, Motors & Drives, Power Transmission, Robotics, Robotics, Alloys, Glass, Gears, Durability, Durability, Spacecraft

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.