Motion Control

Learning to Crawl: Origami Robot Moves Like an Earthworm

A new mechanical innovation unfolded this month at the University of Illinois at Urbana-Champaign as a team of engineers built a new kind of crawler robot. The wheel-less design takes inspiration from two unconventional sources: origami and the earthworm.

Posted in: News, Materials, Motion Control, Motors & Drives, Robotics

Harmonic Air Motor Offers Very High Efficiency

Currently available air motors have many advantages over electric motors. They are more compact, lighter-weight, instantly reversible without sparking, create no heat buildup, are undamaged by stalling or overloading, and supply extremely broad torque and speed range. Generally available commercial air motors, however, have only 5% to 20% of ideal efficiency.

Posted in: News, Motion Control, Motors & Drives

Robotic Gripper Cleans Up Space Debris

Currently there are about 500,000 pieces of human-made debris in space, orbiting our planet at speeds up to 17,500 miles per hour. This debris poses a threat to satellites, space vehicles, and astronauts aboard those vehicles. However, cleaning up the debris is problematic. For example, suction cups don’t work in a vacuum, and traditional sticky substances like tape are largely useless because the chemicals they rely on can’t withstand extreme temperature swings.

Posted in: News, Motion Control, Robotics

Wireless Magnetic Field Powers Folding Robots

A team of researchers at the Wyss Institute for Biologically Inspired Engineering and the John A. Paulson School of Engineering and Applied Sciences (SEAS) at Harvard University has created battery-free folding robots that are capable of complex, repeatable movements powered and controlled through a wireless magnetic field. The system requires only basic, passive electronic components on the robot to deliver an electric current, and the structure of the robot itself takes care of the rest.

Posted in: News, Motion Control, Robotics

Soft Robot “Walks” on Any Terrain

Traditional robots often feature isolated mechanical joints. These discrete components limit a rover’s ability to traverse sand, stone, and other challenging environments. A team at the University of California San Diego has demonstrated a more flexible option: a soft robot that lifts its legs over obstacles and operates on a variety of terrains. The 3D-printed quadrupedal technology may someday support search-and-rescue missions requiring intelligent navigation capabilities.

Posted in: Briefs, Motion Control, Automation, Sensors and actuators, Sensors and actuators, Terrain, Kinematics, Additive manufacturing, Robotics, Autonomous vehicles

High-Temperature Actuators Bend as They “Breathe”

The mechanical components are made from films that expand and contract as they let oxygen in and out.

Extreme temperatures are hard for mechanical components to endure without degrading. To address the problem, researchers at MIT worked with several other universities to develop a new way to make actuators that could be used in exceptionally hot environments.

Posted in: Briefs, Motion Control, Automation, Sensors and actuators, Sensors and actuators, Heat resistant materials, Materials properties, Test equipment and instrumentation

3D-Printed Tensegrity Object Can Change Shape

The technology creates a large, lightweight, strong object that can be flattened and then expanded to its full size when heated.

A team of researchers from the Georgia Institute of Technology has developed a way to use 3D printers to create objects capable of dramatic expansion. The technology could someday be used in applications ranging from space missions to biomedical devices. The new 3D-printed objects use tensegrity, a structural system of floating rods in compression and cables in continuous tension. The researchers fabricated the struts from shape memory polymers that unfold when heated.

Posted in: Briefs, Motion Control, Automation, Thermodynamics, Thermodynamics, Additive manufacturing, Fabrication, Materials properties, Polymers, Smart materials

Flat, Triangular Modules Connect to Form Origami Robot

Using two genderless mechanisms, module sides are connected and folded to create reconfigurable 3D structures.

Origami robots are composed of thin structures that can fold and unfold to change shape. They are compact and lightweight, but have functional restrictions related to size, shape, and how many folds can be created. On the other hand, modular robots use large numbers of individual entities to reconfigure the overall shape and address diverse tasks. These robots are more flexible when it comes to shape and configuration, but they are generally bulky and complex.

Posted in: Briefs, Motion Control, Automation, Sensors and actuators, Sensors and actuators, Fabrication, Robotics, Lightweight materials, Materials properties

New Products: August 2017 Motion Design

Brushless AC Servo Motors

Allied Motion Technologies (Amherst, NY) introduced the HeiMotion™ Premium (HMP) brushless AC servo motor family. The motors, which have a 20,000+ hour life span, are available in five metric frame sizes with rated torque from 0.12 up to 14.4 Nm, and continuous shaft power from 50 W to 3.75 kW. Standard flange sizes include 40, 60, 80, 100, and 130 mm. Top speed ranges from 2,000 to 9,000 RPM; holding torque goes from 0.18 to 18.5 Nm; and winding voltage choices extend from 48 V up to 560 V. Optional features include standard resolver or encoder (including single cable HIPERFACE® DSL interface), holding brake, and connector choices.

Posted in: Products, Motion Control

Straws Help Create Simple Robot Joints

Plastic drinking straws and inflatable tubing are used to build machines that walk like insects.

Inspired by arthropod insects and spiders, Harvard professor George Whitesides and Alex Nemiroski, a former postdoctoral fellow in Whitesides’ Harvard lab, used ordinary plastic drinking straws to create a type of semi-soft robot capable of standing and walking. The team also created a robotic water strider capable of pushing itself along the liquid surface.

Posted in: Briefs, Motion Control, Automation, Design processes, Robotics, Materials properties, Plastics

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.