Motion Control

Electromagnetic Actuator Decouples Linear and Rotary Motions

A lightweight module for rapid, accurate, and versatile positioning of semiconductor chips features a novel electromechanical actuator that can move objects both linearly and rotationally. The technology was developed by researchers at the A*STAR Singapore Institute of Manufacturing Technology (A*STAR SIMTech) and National University of Singapore (SIMTech-NUS) Joint Lab.

Posted in: News, Industrial Controls & Automation, Manufacturing & Prototyping, Mechanical Components, Motion Control, Positioning Equipment
Read More >>

Soft “Vinebot” Excels at Search and Rescue

Inspired by natural organisms like vines that cover distance by growing, researchers at Stanford University have created a soft, tubular robot that lengthens to explore hard-to-reach areas. The vine-like robot can grow across long distances without moving its whole body, which could prove useful in search-and-rescue operations and medical applications.

Posted in: News, Motion Control, Robotics
Read More >>

Motor Control Technology Boosts Performance of Remotely Piloted Aircraft

PC Krause and Associates
West Lafayette, IN
For more info click here

With support from the Air Force Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) Program, PC Krause and Associates (PCKA) has developed a system that could meet a wide range of small aircraft electrical power and propulsion system needs. The company was aiming for its new modular motor drive system to fill the gap between existing commercial equipment and custom solutions at a cost that is viable for most remotely piloted aircraft (RPA) platforms.

Posted in: Application Briefs, Motion Control, Motors & Drives, Architecture, Computer software / hardware, Computer software and hardware, Fly-by-wire control systems, Architecture, Computer software / hardware, Computer software and hardware, Fly-by-wire control systems, Electric motors, Military aircraft, Unmanned aerial vehicles
Read More >>

3D Printed Tensegrity Object Can Change Shape

A team of researchers from the Georgia Institute of Technology has developed a way to use 3D printers to create objects capable of shape change. The objects use tensegrity, a structural system of floating rods in compression and cables in continuous tension. The researchers fabricated the struts from shape memory polymers that unfold when heated. The technology could someday be used in applications ranging from space missions to biomedical devices.

Posted in: News, Manufacturing & Prototyping, Mechanical Components, Motion Control
Read More >>

Self-Learning Robot Hands Adapt to Grasp Objects

A new grasp system with robotic hands works without previously knowing the characteristics of objects. The system, which learns by trial and error, was developed by researchers at Bielefeld University in Bielefeld, Germany. It features two hands that are based on human hands in terms of both shape and mobility. The robot brain for the hands must learn how everyday objects like pieces of fruit or tools can be distinguished based on their color or shape, as well as what matters when attempting to grasp the object; for example, a banana can be held, and a button can be pressed. The system learns to recognize such possibilities as characteristics, and constructs a model for interacting with and re-identifying the object.

Posted in: News, Motion Control, Positioning Equipment, Automation, Robotics
Read More >>

Crawling Robot is Powered by Moisture

Using an off-the-shelf camera flash, researchers at Jilin University, China, turned an ordinary sheet of graphene oxide into a material that bends when exposed to moisture. They then used this material to make a spider-like crawler and claw robot that move in response to changing humidity, without the need for any external power.

Posted in: News, Materials, Motion Control, Robotics
Read More >>

Oil Sheer Clutch Cuts Downtime for Metal Stamping Press

Replacing a mechanical clutch, the oil sheer technology supplies constant, reliable tension on the stock feeding a 400-ton press to deliver precision and repeatability.

In the metal stamping business, precision, repeatability, and uptime are key. But stamping accuracy suffers when improper tension on the coil feeders incorrectly supplies metal to the presses, resulting in off-spec parts and increased rejections. ART Technologies of Fairfield, OH, relies on an oil shear clutch brake to supply constant, reliable tension on the coil feeding to one of its 400-ton presses to produce the precision and repeatability it needs, with no downtime for maintenance or adjustment. When the plant is working 20 hours a day, that uptime is as critical as the tolerances it maintains.

Posted in: Application Briefs, Motion Control, Manufacturing equipment and machinery, Stamping, Parts
Read More >>

Modular Climbing Robot Splits into Multiple Explorer Bots

Researchers from the Robotics Research Centre at the International Institute of Technology – Hyderabad (IIIT-H), have developed a stair and obstacle climbing robot that can disassemble itself into smaller robots, and then reassemble back into one device. As a composite system, the Detachable Compliant Modular Robot (DCMR) can climb steep obstacles and staircases, and explore uneven terrain. When it detaches into multiple robots, it can explore cramped spaces, traverse flat terrain, and behave as a Multi Agent System (MAS).

Posted in: News, Motion Control, Robotics
Read More >>

Actuated Smartwatch Moves in Five Directions

In an effort to make digital smartwatches more convenient for users, researchers at Dartmouth College and the University of Waterloo have produced a prototype watch face named Cito that moves in five different directions. With the ability to rotate, hinge, translate, rise, and orbit, the model improves functionality and addresses some of the limitations of today’s fixed-face watches.

Posted in: News, Motion Control
Read More >>

Mechanical Actuators Bend as They “Breathe”

Extreme temperatures can severely strain a mechanical component because its material may have trouble enduring the heat without degrading. To address the problem, researchers at MIT developed a new material that expands and contracts as it lets oxygen in and out. The result is a new way to make actuators that could be used in extremely hot environments.

Posted in: News, Materials, Mechanical Components, Motion Control
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.