Motion Control

Micropulse Detonation Rocket Engine for Nano-Satellite Propulsion

Goddard Space Flight Center, Greenbelt, Maryland

An efficient propulsion system would use a micropulse detonation rocket engine (–PDRE) for nano-satellite maneuverability in space. Technical objectives are to design, build, and conduct a small detonation tube experiment in order to explore the feasibility of using –PDRE for propelling a nano-satellite. The plan is to study the requirement and predict the performance of –PDRE using various candidate propellants, as well as to conduct ground experiments, demonstrate useful thrust, and measure the specific impulse in a two-year time frame, so that a follow-on project can be proposed in a future NRI Center Innovation Fund.

Posted in: Briefs, TSP, Aeronautics, Motion Control, Propulsion, Automation, Propellants, Rocket engines, Satellites
Read More >>

Experimental Testbed for 1-MW Turboelectric Distributed Propulsion Aircraft

A low-cost glider design mitigates risk in conducting experiments for cutting-edge “green” aircraft concepts.

Armstrong Flight Research Center, Edwards, California

Researchers at NASA’s Armstrong Flight Research Center are developing a concept aircraft for testing turbo-electric distributed propulsion (TeDP) experiments. TeDP generally involves providing thrust to an aircraft via wing-mounted ducted electric fans, which consist of an electric motor, a fan, stators, and other components surrounded by cylindrical ducting within a fan case. The fan motors are powered by a combined battery and turboelectric generator system. To sufficiently power an aircraft approximately 50 ft (≈15 m) in length and with a gross weight of 25,000 lb (≈11,340 kg), this system must be capable of generating 1 MW of power.

Posted in: Briefs, Aviation, Motion Control, Motors & Drives, Propulsion, Wings, Electric motors, Fans
Read More >>

Propellant Loading Visualization Software

Monitoring of complex propulsion pressure systems has been simplified with colors.

Goddard Space Flight Center, Greenbelt, Maryland

Complex pressure systems are utilized during testing in the propulsion branch as well as during the propellant loading stage of a mission. Keeping track of the state of such a system becomes more difficult as the complexity of such a system increases, and when extensive procedures are being followed. A book-keeping system is needed for visualizing these complex systems.

Posted in: Briefs, TSP, Motion Control, Propulsion, Software, Computer software / hardware, Computer software and hardware, Imaging, Imaging and visualization, Computer software / hardware, Computer software and hardware, Imaging, Imaging and visualization, Propellants
Read More >>

Google Glass for Industrial Automation

A new concept uses Google Glass for operating machinery, with all of the benefits delivered by wearable computing in an industrial environment. With Google’s Web-enabled glasses, status or dialog messages can be projected via a head-up display directly into a person’s field of vision. Online information and communication is also possible with this innovative device, and error messages can be acknowledged using a touchpad.

Posted in: Articles, Manufacturing & Prototyping, Motion Control, Optics, Automation, Computer software / hardware, Computer software and hardware, Imaging, Imaging and visualization, Computer software / hardware, Computer software and hardware, Imaging, Imaging and visualization, Displays, Displays, Diagnostics, Automation, Industrial vehicles and equipment
Read More >>

Energy Efficiency in Machine Tools

Discussions of the efficient use of energy have become more frequent in many sectors of industry. Machine tools comprise numerous motors and auxiliary components whose energy consumption can vary strongly during machining. The main spindle drive, for example, and the coolant system work near their rated power during roughing with a high stock removal rate, while the power consumption during finishing is significantly lower. There is a very close interdependence between the individual components and subassemblies of a machine tool and aspects of productivity and quality. From a detailed examination of manufacturing processes to the power consumption of individual components, potential for savings can be evaluated and measures can be defined for the efficient use of energy.

Posted in: Application Briefs, Articles, Energy, Energy Efficiency, Motion Control, Motors & Drives, Automation, Tools and equipment, Manufacturing equipment and machinery, Materials handling, Milling
Read More >>

Robust Gimbal System for Small-Payload Manipulation

This is a low-mass, small-volume gimbal unit.

NASA’s Jet Propulsion Laboratory, Pasadena, California

Spaceborne gimbal systems are typically bulky with large footprints. Such a gimbal system may consist of a forked elevation stage rotating on top of the azimuth motor, and occupy a large volume. Mounting flexibility of such a system may be limited.

Posted in: Articles, Briefs, TSP, Mechanical Components, Motion Control, Motors & Drives, Materials handling, Mountings, Spacecraft
Read More >>

A Phase-Changing Pendulum to Control Spherical Robots and Buoy Sensors

The pendulum adds new flexibility to motion control.

A novel mechanical control system has been proposed for spherical robots to be used as multifunctioning sensor buoys in areas with ambient forces such as winds or currents. The phase-changing pendulum has been specifically designed for Moballs, a self-powered and controllable multifunctioning spherical sensor buoy to be used in the Arctic and Antarctica, or in other solar system planets or moons with atmosphere, such as Mars or Titan. The phase-changing pendulum has been designed to function in different phases: 1) When used as the spherical buoy, the Moball needs to take advantage of external forces such as the wind for its mobility. With no constraints, it could keep the center of mass in the geometric center of the sphere to facilitate the sphere’s movement. 2) However, as soon as the Moball needs to slow down or stop, the sphere’s center of mass can be lowered. 3) Furthermore, the phase-changing pendulum could lean to the sides, thereby changing the direction of the Moball by biasing its center of mass to the corresponding side. The Moballs could take advantage of such a novel phase-changing pendulum to go as fast as possible using the ambient winds, and to stop or steer away when facing hazardous objects or areas (such as the gullies), or when they need to stop in an area of interest in order to perform extensive tests. It is believed that this is the very first time that a pendulum has been suggested to control a spherical structure where both the length and the angle of the pendulum are adjustable in order to control the sphere. 4) Finally, the phase-changing pendulum could also control the sphere in the absence of wind. The spherical sensor buoys or Moballs could use the stored harvested energy (e.g., from sunlight or earlier wind-driven motions) to move the phase-changing pendulum and create torque, and make the spherical sensor buoys initiate rolling with the desired speed and direction. This is especially useful when the spheres need to get close to an object of interest in order to examine it.

Posted in: Articles, Briefs, Motion Control, Sensors and actuators, Sensors and actuators, Robotics
Read More >>

Linear Position Sensors

H. G. Schaevitz Alliance Sensors Group (Moorestown, NJ) introduced the LR-19 series inductive linear position sensors. The contactless devices are designed for factory automation and a variety of industrial or commercial applications such as motor sport vehicles, automotive testing, solar cell positioners, wind turbine prop pitch and brake position, and packaging equipment. They are offered in six full-scale ranges from 25 to 200 mm. Operating from a variety of DC voltages, the sensors offer a choice of four analog outputs and include proprietary SenSetTM field recalibration.

Posted in: Articles, Products, Motion Control, Positioning Equipment, Sensors
Read More >>

Stepper Motor

Lin Engineering (Morgan Hill, CA) released the Xtreme Torque E5618 stepper motor that has been designed to reduce stalling, skipped steps, and provide efficient torque. The new design allows users to stay within the same frame size. The NEMA 23 stepper has a holding torque of 150 oz-in and is suited for applications with heavier loads or at increased risk of stalling or skipping steps. It also allows for an integral connector or flying lead wires.

Posted in: Articles, Products, Motion Control, Motors & Drives
Read More >>

Motor Driver ICs

Toshiba America Electronic Components (San Jose, CA) offers four motor driver ICs, ranging from precision stepper motor drivers to sensorless brushless DC motor drivers. The TB67S269FTG bipolar stepping motor driver has a maximum rating of 50V and 2.0A. Three brushless DC motor drivers — the TB67B001FTG, TB67B008FTG, and TB67B008FNG — feature maximum rating of 25V and 3.0A. The TB67S269FTG targets applications requiring high-speed, high-precision motor drives. The driver’s high-resolution, 1/32-step motor driving technology lowers noise and vibration, while heat generation is reduced via low ON resistance (0.8Ω or less, upper + lower) MOSFET H-bridges and featuring Toshiba’s Advanced Mixed Decay (ADMD) technology that optimizes the drive capability of complex motor currents.

Posted in: Articles, Products, Motion Control, Motors & Drives, Semiconductors & ICs
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.