Nanotechnology

Scientist Creates Three-Atom-Wide Nanowire

Junhao Lin, a Vanderbilt University Ph.D. student and visiting scientist at Oak Ridge National Laboratory (ORNL), has found a way to use a finely focused beam of electrons to create some of the smallest wires ever made. The flexible metallic wires are only three atoms wide: One thousandth the width of the microscopic wires used to connect the transistors in today’s integrated circuits.

The technique represents an exciting new way to manipulate matter at the nanoscale and should give a boost to efforts to create electronic circuits out of atomic monolayers, the thinnest possible form factor for solid objects.

“This will likely stimulate a huge research interest in monolayer circuit design,” Lin said. “Because this technique uses electron irradiation, it can in principle be applicable to any kind of electron-based instrument, such as electron-beam lithography.”

One of the intriguing properties of monolayer circuitry is its toughness and flexibility.

“If you let your imagination go, you can envision tablets and television displays that are as thin as a sheet of paper that you can roll up and stuff in your pocket or purse,” said University Distinguished Professor of Physics and Engineering at Vanderbilt University, Sokrates Pantelides.

Source

Also: Learn about a Zinc Oxide Nanowire Interphase.

Posted in: News, Board-Level Electronics, Electronic Components, Electronics & Computers, Materials, Metals, Nanotechnology, Semiconductors & ICs
Read More >>

Aircraft Engine Coating Could Triple Service Life and Save Fuel

Researchers at University West in Sweden are using nanoparticles in the heat-insulating surface layer that protects aircraft engines from heat. In tests, this increased the service life of the coating by 300%. The hope is that motors with the new layers will be in production within two years. The surface layer is sprayed on top of the metal components. Thanks to this extra layer, the engine is shielded from heat. The temperature can also be raised, which leads to increased efficiency, reduced emissions, and decreased fuel consumption.

Posted in: News, Aerospace, Aviation, Energy, Energy Efficiency, Ceramics, Coatings & Adhesives, Materials, Motion Control, Nanotechnology, Power Transmission
Read More >>

Nanomaterial Extends Lithium-Sulfur Battery Lifespan

A new nanomaterial could extend the lifespan of lithium-sulfur batteries, and therefore the driving range of electric vehicles.

Pacific Northwest National Laboratory researchers added the powder to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.

Metal organic frameworks — also called MOFs — are crystal-like compounds made of metal clusters connected to organic molecules, or linkers. Together, the clusters and linkers assemble into porous 3-D structures.

During lab tests, a lithium-sulfur battery with PNNL's MOF cathode maintained 89 percent of its initial power capacity after 100 charge-and discharge cycles. Having shown the effectiveness of their MOF cathode, PNNL researchers now plan to further improve the cathode's mixture of materials so it can hold more energy.

Source

Also: Check out other Materials tech briefs.

Posted in: News, Batteries, Electronics & Computers, Power Management, Materials, Metals, Nanotechnology
Read More >>

Researchers Use Sun to Produce Solar-Energy Materials

In a recent advance in solar energy, researchers have discovered a way to tap the sun not only as a source of power, but also to directly produce solar energy materials.

This breakthrough by chemical engineers at Oregon State University could soon reduce the cost of solar energy, speed production processes, use environmentally benign materials, and make the sun a “one-stop shop” that produces both the materials for solar devices and the energy to power them.

The work is based on the use of a “continuous flow” microreactor to produce nanoparticle inks that make solar cells by printing. In this process, simulated sunlight is focused on the solar microreactor to rapidly heat it, while allowing precise control of temperature to aid the quality of the finished product. The light in these experiments was produced artificially, but the process could be done with direct sunlight, and at a fraction of the cost of current approaches.

Source

Also: Read other Materials tech briefs.

Posted in: News, Energy, Renewable Energy, Solar Power, Manufacturing & Prototyping, Materials, Nanotechnology
Read More >>

Wireless Device Senses Chemical Vapors

A research team at the Georgia Tech Research Institute (GTRI) has developed a small electronic sensing device that can alert users wirelessly to the presence of chemical vapors in the atmosphere. The technology, which could be manufactured using familiar aerosol-jet printing techniques, is aimed at myriad applications in military, commercial, environmental, and healthcare areas.

The current design integrates nanotechnology and radio-frequency identification (RFID) capabilities into a small working prototype. An array of sensors uses carbon nanotubes and other nanomaterials to detect specific chemicals, while an RFID integrated circuit informs users about the presence and concentrations of those vapors at a safe distance wirelessly.

Because it is based on programmable digital technology, the RFID component can provide greater security, reliability and range – and much smaller size – than earlier sensor designs based on non-programmable analog technology. The present GTRI prototype is 10 centimeters square, but further designs are expected to squeeze a multiple-sensor array and an RFID chip into a one-millimeter-square device printable on paper or on flexible, durable substrates such as liquid crystal polymer.

Source

Also: Learn about Extended-Range Passive RFID and Sensor Tags.

Posted in: News, Communications, Wireless, Defense, Electronic Components, Electronics, Electronics & Computers, Environmental Monitoring, Green Design & Manufacturing, Manufacturing & Prototyping, Medical, Nanotechnology, RF & Microwave Electronics, Semiconductors & ICs, Detectors, Sensors
Read More >>

Low-Cost Paper Test Detects Cancer in Minutes

A simple, cheap, paper test has been developed that could improve cancer diagnosis rates and help people get treated earlier. The diagnostic, which works much like a pregnancy test, could reveal within minutes, based on a urine sample, whether a person has cancer. The technology relies on nanoparticles that interact with tumor proteins called proteases, each of which can trigger release of hundreds of biomarkers that are easily detectable in urine.

Posted in: News, Medical, Nanotechnology
Read More >>

Transparent Display System Could Provide Heads-Up Data

Transparent displays have a variety of potential applications — such as the ability to see navigation or dashboard information while looking through the windshield of a car or plane, or to project video onto a window or a pair of eyeglasses. A number of technologies have been developed for such displays, but all have limitations.

Posted in: News, Nanotechnology
Read More >>

New Material Enables Improved Ultrasound

Ultrasound technology could soon be improved to produce high-quality, high-resolution images, thanks to the development of a new key material by a team of researchers in the Department of Biomedical Engineering at Texas A&M University, College Station.


Posted in: Briefs, MDB, Briefs, Imaging, Materials, Metals, Bio-Medical, Diagnostics, Imaging, Medical, Patient Monitoring, Nanotechnology, Optics, Photonics, Imaging, Imaging and visualization, Imaging, Imaging and visualization
Read More >>

'Nanoflowers' for Energy Storage and Solar Cells

North Carolina State University researchers have created flower-like structures out of germanium sulfide (GeS) – a semiconductor material – that have extremely thin petals with an enormous surface area. The GeS flowers hold promise for next-generation energy storage devices and solar cells.

Posted in: News, News, Batteries, Energy Storage, Renewable Energy, Solar Power, Materials, Nanotechnology
Read More >>

An Ionic Twist on Hair Care

Nanomaterials developed by NASA play a big role in professional hairstyling tools.

Disinfecting can be dirty work. Typical cleaning agents, like chlorine and alcohol, release fumes that don’t go away when applied in the contained environment of a spacecraft. So NASA scientists developed an alternative method to keep surfaces disinfected, using a material whose antimicrobial properties have long been known: nanosilver.

Posted in: Articles, Nanotechnology, Bacteria, Human factors, Ceramics, Materials properties, Nanomaterials
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.