Thin Photodetector Increases Performance Without Adding Bulk

In today’s increasingly powerful electronics, tiny materials are a must as manufacturers seek to increase performance without adding bulk. Smaller also is better for optoelectronic devices — like camera sensors or solar cells — which collect light and convert it to electrical energy. Think, for example, about reducing the size and weight of a series of solar panels, producing a higher-quality photo in low lighting conditions, or even transmitting data more quickly.

Posted in: News, Optical Components, Photonics, Sensors

Single-Photon Emitter Holds Promise for Quantum Info-Processing

Los Alamos National Laboratory has produced the first known material capable of single-photon emission at room temperature and at telecommunications wavelengths. These carbon nanotube quantum light emitters may be important for optically-based quantum information processing and information security, while also being of significant interest for ultrasensitive sensing, metrology and imaging needs and as photon sources for fundamental advances in quantum optics studies.

Posted in: News, Photonics

Laser Pulses Produce Sharp Images of Organs in Motion

Researchers have developed a photoacoustic imaging technique that uses lasers to create detailed ultrasound images in live animals. The method allows for complete internal body scans with enough spatiotemporal resolution to see active organs, circulating cancer cells, and brain function.

Posted in: News, Imaging, Lasers & Laser Systems

Introducing the 2017 OEM Photonics & Imaging Directory

Looking for new cameras, lasers, or optics? Our 2017 OEM Photonics & Imaging Directory, featured in the September issue of Tech Briefs, reviews essential vendors.

Posted in: News, Cameras, Imaging, Machine Vision, Fiber Optics, Lasers & Laser Systems, Optical Components, Optics, Photonics

Dr. (James) Ira Thorpe, Astrophysicist, Gravitational Astrophysics Laboratory, NASA Goddard Spaceflight Center, Greenbelt, MD

Gravitational waves from colliding black holes were first observed by the Laser Interferometer Gravitational-Wave Observatory (LIGO) instruments in 2015. Building on these efforts on the ground, an international group of scientists is working to develop a space-based gravitational wave observatory called the Laser Interferometer Space Antenna (LISA). Dr. Thorpe developed instrumentation used on LISA.

Posted in: Who's Who, Lasers & Laser Systems, Physical Sciences

Linear Encoders Enable More Accurate Observation of the Sun

HEIDENHAIN Corporation
Schaumburg, IL

Scientists know surprisingly little about what happens on the Sun. Solar researchers want to change this with the new Daniel K. Inouye Solar Telescope (DKIST) on the island of Maui, Hawaii. The Kiepenheuer Institute for Solar Physics (KIS) in Freiburg, Germany is developing a Visible Tunable Filter (VTF) for this project. With a mirror diameter of four meters, it will be the largest solar telescope in the world, and therefore will provide a very detailed view of the Sun’s surface. The filter adjustment is controlled by HEIDENHAIN linear encoders with an accuracy of under one nanometer.

Posted in: Application Briefs, Imaging, Lasers & Laser Systems, Photonics

Camera Trends 2017

For an in-depth look at current trends in the camera market, we interviewed Alex Shikany, Director of Market Analysis, Association for Advancing Automation (A3), Ann Arbor, MI.

Posted in: Articles, Photonics

X-Ray Scattering Constructs 3D Images of Nanoparticle Grains

Scientists at Argonne National Laboratory have developed a new X-ray technique to see inside continuously packed nanoparticles, also known as grains, to examine deformations and dislocations that affect their properties.

Posted in: Briefs, Photonics

Carbon Nanotube-Based Coatings Provide Extremely-High Surface Emissivity

Santa Barbara Infrared (SBIR) and Surrey NanoSystems (SNS) have partnered to produce a line of extended-area blackbody sources with exceptionally-high emissivity and radiometric accuracy. The emitter plates in these sources feature a carbon nanotube (CNT) based coating with remarkable light-trapping properties. This ultra-black coating was developed by SNS to satisfy a broad range of applications requiring surfaces with extremely low reflectance. The resulting blackbody sources provide more accurate infrared (IR) radiometric calibration than previously achievable by drastically reducing errors due to reflected IR light from the surrounding environment. The coating also works to reduce stray light in optical and IR imaging systems.

Posted in: Application Briefs, Photonics

High-Resolution Imaging with Conventional Microscopes

MIT researchers have developed a method for making extremely high-resolution images of tissue samples at a fraction of the cost of other techniques, yet with similar resolution. The new technique relies on expanding tissue before imaging it with a conventional light microscope. Two years ago, the team showed that it was possible to expand tissue volumes 100-fold, resulting in an image resolution of about 60 nanometers. Now, they have shown that expanding the tissue a second time before imaging can boost the resolution to about 25 nanometers.

Posted in: Briefs, Photonics

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.