Photonics/Optics

2.2-Micron, Uncooled, InGaAs Photodiodes and Balanced Photoreceivers up to 25-GHz Bandwidth

These photodiodes have applications in LiDAR sensors, telecommunications links, and pulsed laser systems.

Traditional applications for 2-micron photodetectors have been largely dominated by passive remote sensing where detectors having bandwidth of even one megahertz are deemed sufficient. The onus in such applications is to achieve low dark current through active cooling. The advent of high-power, 2-micron-wave-length lasers have made coherent LiDARs viable for active sensing applications. Such a system needs photodetectors that can handle high local oscillator optical power and have large bandwidth. Through a combination of high coherent gain and small integration time, a large signal-to-noise ratio can be achieved. Operation at high optical power levels reduces the significance of photodiodes’ dark current. As a result, uncooled operation at room temperature is feasible, simplifying the overall instrument design.

Posted in: Briefs, Photonics, Optics, Remote sensing, Optics, Remote sensing, Cooling
Read More >>

Thermal Imaging: How Does It Work?

By detecting very subtle temperature differences of everything in view, infrared technology reveals what otherwise would be invisible to the naked eye.

Posted in: Articles, Imaging, Photonics, Imaging, Imaging and visualization, Sensors and actuators, Imaging, Imaging and visualization, Sensors and actuators, Heat transfer, Heat transfer, Visibility
Read More >>

Fourier Transform Spectrometer System

NASA's Langley Research Center and Science Applications International Corporation have developed a method of processing data from Fourier transform spectroscopy (FTS) measurements that improves upon existing methods. This method is simpler, more accurate, faster, and less expensive than previous methods. It uses less hardware and can be used with all wavelengths.

Posted in: Briefs, Photonics, Architecture, Spectroscopy, Architecture, Spectroscopy, Data management
Read More >>

New Products: March 2017 Photonics & Imaging Technology

Near Eye Displays Test System

A new test system from Gamma Scientific (San Diego, CA) offers high spatial resolution color and contrast measurements for near eye displays (NED), such as virtual reality (VR) and augmented reality (AR) headsets, and heads up displays (HUD). The Gamma Scientific NED Measurement System incorporates compact imaging optics which feed both an integrated camera viewing system and a low-noise, high-accuracy spectroradiometer.

Posted in: Products, Imaging, Photonics
Read More >>

Six Questions About Today's Camera Market

Although camera components like CCD and infrared sensors have reached a level of maturity, imaging features continue to evolve. Analysts from the San Francisco, CA-based business consulting firm Grand View Research spoke with P&IT about current camera technology's most exciting capabilities, applications, and leaders.

Posted in: Articles, Cameras, Imaging, Photonics, Imaging, Imaging and visualization, Optics, Imaging, Imaging and visualization, Optics, Product development, Technical reference, Technical review
Read More >>

Large-Area, Polarization-Sensitive Bolometer for Multi-Mode Optics

This type of detector will be used by the PIXIE mission to map the microwave sky in polarization, opening a new window to the earliest moments of the universe.

Measurements of the cosmic microwave background are a powerful probe of the early universe. Part-per-million fluctuations in the intensity of background trace the initial conditions of matter and energy shortly after the Big Bang, mapping the large-scale structure of spacetime. Now, new measurements in linear polarization at sensitivities of a few parts per billion can look behind these initial conditions to test physics at energies a trillion times higher than terrestrial accelerators, and perhaps even provide a glimpse of quantum gravity in action.

Posted in: Briefs, Photonics, Measurements, Optics, Optics, Radiation
Read More >>

Autonomous Driving — In a ‘Flash’

By combining CMOS technology with avalanche photodiodes, researchers at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS (Duisburg, Germany) have developed a potentially cost-effective sensor prototype that aims to support driverless car applications. The “Flash LiDAR” could play a valuable role alongside the cameras, radars, and other components within autonomous vehicles.

Posted in: Application Briefs, Imaging, Photonics, Lidar, Sensors and actuators, Lidar, Sensors and actuators, Product development, Semiconductors, Autonomous vehicles
Read More >>

ViDAR Optical Radar Provides New Maritime Search Capability

ViDAR, developed by Sentient Vision Systems in Melbourne Australia, provides autonomous, real-time, wide-area search capability, optically, from unmanned aerial vehicles (UAVs) or manned aircraft. ViDAR, which stands for Visual Detection and Ranging, essentially acts as an optical radar, using high-megapixel video or infrared cameras to search the ocean over significantly greater operational coverage areas than can be achieved with current optical sensor approaches.

Posted in: Application Briefs, Imaging, Photonics, Optics, Surveillance, Optics, Surveillance, Performance upgrades, Product development, Fixed-wing aircraft, Unmanned aerial vehicles
Read More >>

Infrared Cameras Support Advanced 3D Printing Efforts

Additive manufacturing (AM), also known as 3D printing, is quite literally one of the most innovative technologies revolutionizing manufacturing today, in terms of both industry “buzz” and thermal properties. Unlike subtractive manufacturing methods such as machining, the growing range of AM technologies creates components directly from a computer model, adding material only where needed. Wohlers Associates, a leading independent consulting firm focused on these technologies, is forecasting that the value of the worldwide AM market will grow to more than $10.8 billion by 2021, up from just $2.2 billion in 2012. That rapid escalation, however, isn't the result of hobbyists buying desktop 3D printers that cost a few hundred dollars.

Posted in: Articles, Cameras, Imaging, Photonics, CAD / CAM / CAE, CAD, CAM, and CAE, Optics, Optics, Market research, Technical reference, Technical review, Additive manufacturing
Read More >>

Researchers Turn iPhone Camera into Optical Sensor

By integrating an optical Micro-Electro-Mechanical Systems, or MEMS, chip into an iPhone camera, researchers at the VTT Technical Research Centre of Finland have developed a new, cost-effective kind of hyperspectral technology. The spectral device will provide mobile device users and consumers with new ways to monitor their environments, including quick food analysis, health checks, and other Internet-connected sensing. Research team leader Anna Rissanen works actively with companies to enable commercialization and new business development based on the team's various sensors.

Posted in: Articles, Optics, Sensors, Microelectricmechanical device, Microelectromechanical devices, Optics, Sensors and actuators, Microelectricmechanical device, Microelectromechanical devices, Optics, Sensors and actuators, Research and development
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.