Tech Briefs

Theoretical Studies of Routes to Synthesis of Tetrahedral N4

A paper [Chem. Phys. Lett. 345, 295 (2001)] describes theoretical studies of excited electronic states of nitrogen molecules, with a view toward utilizing those states in synthesizing tetrahedral N4, or Td N4 — a metastable substance under consideration as a high-energy-density rocket fuel. Several ab initio theoretical approaches were followed in these studies, including complete active space selfconsistent field (CASSCF), state-averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with secondorder and third-order correlation corrections [CIS(D) and CIS(3)], and linear response singles and doubles coupledcluster (LRCCSD). Standard double zeta polarized and triple zeta double polarized one-particle basis sets were used.

Posted in: Briefs, Physical Sciences, Spacecraft fuel, Research and development
Read More >>

Estimation Filter for Alignment of the Spitzer Space Telescope

A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states — two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Calibration, Mathematical models, Imaging and visualization, Spacecraft
Read More >>

Antenna for Measuring Electric Fields Within the Inner Heliosphere

A document discusses concepts for the design of an antenna to be deployed from a spacecraft for measuring the ambient electric field associated with plasma waves at a location within 3 solar radii from the solar photosphere. The antenna must be long enough to extend beyond the photoelectron and plasma sheaths of the spacecraft (expected to be of the order of meters thick) and to enable measurements at frequencies from 20 Hz to 10 MHz without contamination by spacecraft electric-field noise. The antenna must, therefore, extend beyond the thermal protection system (TPS) of the main body of the spacecraft and must withstand solar heating to a temperature as high as 2,000 °C while not conducting excessive heat to the interior of the spacecraft.

Posted in: Briefs, TSP, Physical Sciences, Measurements, Antennas, Test equipment and instrumentation, Spacecraft
Read More >>

Improved High-Voltage Gas Isolator for Ion Thruster

A report describes an improved highvoltage isolator for preventing electrical discharge along the flow path of a propellant gas being fed from a supply at a spacecraft chassis electrical potential to an ion thruster at a potential as high as multiple kilovolts. The isolator must survive launch vibration and must remain electrically nonconductive for thousands of hours under conditions that, in the absence of proper design, would cause formation of electrically conductive sputtered metal, carbon, and/or decomposed hydrocarbons on its surfaces.

Posted in: Briefs, TSP, Physical Sciences, High voltage systems, Propellants, Gases, Insulation, Fuel injection, Spacecraft
Read More >>

Hybrid Mobile Communication Networks for Planetary Exploration

A paper discusses the continuing work of the Mobile Exploration System Project, which has been performing studies toward the design of hybrid communication networks for future exploratory missions to remote planets. A typical network could include stationary radio transceivers on a remote planet, mobile radio transceivers carried by humans and robots on the planet, terrestrial units connected via the Internet to an interplanetary communication system, and radio relay transceivers aboard spacecraft in orbit about the planet. Prior studies have included tests on prototypes of these networks deployed in Arctic and desert regions chosen to approximate environmental conditions on Mars. Starting from the findings of the prior studies, the paper discusses methods of analysis, design, and testing of the hybrid communication networks. It identifies key radio-frequency (RF) and network engineering issues. Notable among these issues is the study of wireless LAN throughput loss due to repeater use, RF signal strength, and network latency variations. Another major issue is that of using RF-link analysis to ensure adequate link margin in the face of statistical variations in signal strengths.

Posted in: Briefs, Electronics & Computers, Design processes, Architecture, Internet, Radio equipment, Wireless communication systems, Spacecraft
Read More >>

Recirculation of Laser Power in an Atomic Fountain

Optical and electronic subsystems of a frequency standard can be simplified.

A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing.

Posted in: Briefs, TSP, Physical Sciences, Lasers
Read More >>

Recirculation of Laser Power in an Atomic Fountain

Optical and electronic subsystems of a frequency standard can be simplified.

NASA’s Jet Propulsion Laboratory, Pasadena, California

A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing.

Posted in: Briefs, ptb catchall, Tech Briefs, Photonics, Lasers, Cooling
Read More >>

Simplified Generation of High-Angular-Momentum Light Beams

Inherent properties of a WGM resonator and optical fiber are exploited.

NASA’s Jet Propulsion Laboratory, Pasadena, California

A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering-gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. (“Bessel beam” denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.)

Posted in: Briefs, ptb catchall, Tech Briefs, Photonics, Fiber optics, Lasers, Performance upgrades, Acoustics
Read More >>

Complex Type-II Interband Cascade MQW Photodetectors

Multiple active subregions, each optimized for a different color, would enable multicolor operation.

NASA’s Jet Propulsion Laboratory, Pasadena, California

Multiple-quantum-well (MQW) photodetectors of a proposed type would contain active regions comprising multiple superlattice subregions. These devices would have complex structures: The superlattice of each subregion would be designed for enhanced absorption of photons in a desired wavelength band (typically in the infrared) and multiple subregions of different design would be cascaded for multicolor operation.

Posted in: Briefs, ptb catchall, Tech Briefs, Photonics, Architecture, Optics, Sensors and actuators, Product development
Read More >>

Interferometric Quantum-Nondemolition Single-Photon Detectors

These detectors would function independently of frequency.

NASA’s Jet Propulsion Laboratory, Pasadena, California

Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single-photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon.

Posted in: Briefs, ptb catchall, Tech Briefs, Photonics, Measurements, Lasers
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.