Tech Briefs

Data-Driven Software Framework for Web-Based ISS Telescience

Software that enables authorized users to monitor and control scientific payloads aboard the International Space Station (ISS) from diverse terrestrial locations equipped with Internet connections is undergoing development. This software reflects a data-driven approach to distributed operations. A Web-based software framework leverages prior developments in Java and Extensible Markup Language (XML) to create portable code and portable data, to which one can gain access via Web-browser software on almost any common computer. Opensource software is used extensively to minimize cost; the framework also accommodates enterprise-class server software to satisfy needs for high performance and security. To accommodate the diversity of ISS experiments and users, the framework emphasizes openness and extensibility. Users can take advantage of available viewer software to create their own client programs according to their particular preferences, and can upload these programs for custom processing of data, generation of views, and planning of experiments. The same software system, possibly augmented with a subset of data and additional software tools, could be used for public outreach by enabling public users to replay telescience experiments, conduct their experiments with simulated payloads, and create their own client programs and other custom software.

Posted in: Briefs, Software

Read More >>

Bare Fiber Holder Eases Positioning for Optical Measurements

Measurements are accurate and repeatable from device to device and user to user. Bare fiber measurements are common in optical component manufacturing before the device under test (DUT) is connectorized and final tested. Insertion loss and polarization dependent loss are typical measurements on passive components before they are connectorized. The precision of these measurements is high, on the order of ±0.01 dB, and repeatability of the measurements is critical in determining the ultimate throughput of the process and devices. With small fiber cores, 8 to 62.5 μm, handling bare fiber for measurements is difficult because the fiber core is easily susceptible to breakage.

Posted in: Briefs, Physical Sciences

Read More >>

Miniature Dual-Wavelength Camera Using InGaAs Focal Plane Arrays

Camera simultaneously images visible and shortwave infrared light.The recent development of indium gallium arsenide (InGaAs) focal plane arrays (FPAs) capable of imaging visible and shortwave infrared (SWIR) wavelengths has yielded a miniature dualwavelength camera with no moving parts that weighs only 11 ounces, consumes less than 1.6 W of power, and operates at room temperature.

Posted in: Briefs, Physical Sciences

Read More >>

Two-Photon Fluorescence Microscope for Microgravity Research

The benefits of two-photon fluorescence microscopy are realized at reduced cost. A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables threedimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed.

Posted in: Briefs, Physical Sciences

Read More >>

Software for Secondary-School Learning About Robotics

The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science.

Posted in: Briefs, Mechanical Components

Read More >>

Atom Skimmers and Atom Lasers Utilizing Them

Atom skimmers act as conduits and low-pass velocity filters.

Posted in: Briefs, Physical Sciences

Read More >>

Tissue Engineering Using Transfected Growth-Factor Genes

Cells, matrices, and bioreactors are tailored to promote functional tissue engineering of cartilage. A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient’s own cells or, if not, at least cells matched to the patient’s cells according to a human-leucocyte-antigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient’s injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells.

Posted in: Briefs, Medical

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.