Tech Briefs

Reproducible Growth of High-Quality Cubic-SiC Layers

Cubic SiC could be used to improve high-power and harsh-environment electronic devices. Semiconductor electronic devices and circuits based on silicon carbide (SiC) are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which devices made from conventional semiconductors cannot adequately perform. The ability of SiC-based devices to function under such extreme conditions is expected to enable significant improvements in a variety of applications and systems. These include greatly improved high-voltage switching for saving energy in public electric power distribution and electric motor drives; more powerful microwave electronic circuits for radar and communications; and sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

Posted in: Briefs, TSP

Read More >>

Nonlinear Thermoelastic Model for SMAs and SMA Hybrid

This model captures essential mechanics with fundamental engineering property input. A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory alloys (SMAs) and of shape- memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.

Posted in: Briefs, TSP

Read More >>

Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers

Liquid-crystal polymers can now be used as resins in textile composites. One of the major challenges for NASA's next-generation reusable-launch-vehicle (RLV) program is the design of a cryogenic lightweight composite fuel tank. Potential matrix resin systems need to exhibit a low coefficient of thermal expansion (CTE), good mechanical strength, and excellent barrier properties at cryogenic temperatures under load. In addition, the resin system needs to be processable by a variety of non-autoclavable techniques, such as vacuum-bag curing, resin-transfer molding (RTM), vacuum-assisted resin-transfer molding (VaRTM), resin-film infusion (RFI), pultrusion, and advanced tow placement (ATP).

Posted in: Briefs

Read More >>

Formulations for Stronger Solid Oxide Fuel-Cell Electrolytes

Alumina is added to yttria-stabilized zirconia. Tests have shown that modification of chemical compositions can increase the strengths and fracture tough- nesses of solid oxide fuel-cell (SOFC) electrolytes. Heretofore, these solid electrolytes have been made of yttria- stabilized zirconia, which is highly conductive for oxygen ions at high temp- eratures, as needed for operation of fuel cells. Unfortunately yttria-stabilized zirconia has a high coefficient of thermal expansion, low resistance to thermal shock, low fracture toughness, and low mechanical strength. The lack of strength and toughness are especially problematic for fabrication of thin SOFC electrolyte membranes needed for contemplated aeronautical, automotive, and stationary power-generation applications.

Posted in: Briefs, TSP

Read More >>

Simulation Testing of Embedded Flight Software

Virtual Real Time (VRT) is a computer program for testing embedded flight software by computational simulation in a workstation, in contradistinction to testing it in its target central processing unit (CPU). The disadvantages of testing in the target CPU include the need for an expensive test bed, the necessity for testers and programmers to take turns using the test bed, and the lack of software tools for debugging in a real-time environment. By virtue of its architecture, most of the flight software of the type in question is amenable to development and testing on workstations, for which there is an abundance of commercially available debugging and analysis software tools. Unfortunately, the timing of a workstation differs from that of a target CPU in a test bed. VRT, in conjunction with closed-loop simulation software, provides a capability for executing embedded flight software on a workstation in a close-to-real-time environment. A scale factor is used to convert between execution time in VRT on a workstation and execution on a target CPU. VRT includes high-resolution operating-system timers that enable the synchronization of flight software with simulation software and ground software, all running on different workstations.

Posted in: Briefs, TSP

Read More >>

Updated System-Availibility and Resource-Allocation Program

A second version of the Availability, Cost and Resource Allocation (ACARA) computer program has become available. The first version was reported in "System-Availability and Resource- Allocation Program" (LEW-15713), NASA Tech Briefs, Vol. 19, No. 8 (August 1995), page 54. To recapitulate: ACARA analyzes the availability, mean-time-between- failures of components, life-cycle costs, and scheduling of resources of a complex system of equipment. ACARA uses a statistical Monte Carlo method to simulate the failure and repair of components while complying with user-specified constraints on spare parts and resources. ACARA evaluates the performance of the system on the basis of a mathematical model developed from a block-diagram representation. The previous version utilized the MS-DOS operating system and could not be run by use of the most recent versions of the Windows operating system. The current version incorporates the algorithms of the previous version but is compatible with Windows and utilizes menus and a file-management approach typical of Windows-based software.

Posted in: Briefs, TSP

Read More >>

Software for Fault-Tolerant Matrix Multiplication

Formal Linear Algebra Recovery Environment is a computer program for high-performance, fault-tolerant matrix multiplication. The program is based on an extension of the prior theory and practice of fault-tolerant matrix·matrix multiplication of the form C = AB. This extension provides low-overhead methods for detecting errors, not only in C, but also in A and/or B. These methods enable the detection of all errors as long as, in a given case, only one entry in A, B, or C is corrupted. The program also provides for following a low-overhead roll-back approach to correct errors once detected. Results of computational experiments have demonstrated that the methods implemented in this program work well in practice while imposing an acceptably low level of overhead, relative to high-performance matrix-multiplication methods that do not afford fault tolerance.

Posted in: Software, Briefs, TSP

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.