Tech Briefs

Alignment Cube With One Diffractive Face

Only one theodolite is needed instead of two. An enhanced alignment cube has been invented for use in a confined setting (e.g., a cryogenic chamber) in which optical access may be limited to a single line of sight. Whereas traditional alignment-cube practice entails the use of two theodolites aimed along two lines of sight, the enhanced alignment cube yields complete alignment information through use of a single theodolite aimed along a single line of sight.

Posted in: Briefs, TSP, Physical Sciences, Optics, Test equipment and instrumentation

Read More >>

Graphite Composite Booms With Integral Hinges

A document discusses lightweight instrument booms under development for use aboard spacecraft. A boom of this type comprises a thin-walled graphite-fiber/matrix composite tube with an integral hinge that can be bent for stowage and later allowed to spring back to straighten the boom for deployment in outer space. The boom design takes advantage of both the stiffness of the composite in tubular geometry and the flexibility of thin sections of the composite. The hinge is formed by machining windows in the tube at diametrically opposite locations so that there remain two opposing cylindrical strips resembling measuring tapes. Essential to the design is a proprietary composite layup that renders the hinge tough yet flexible enough to be bendable as much as 90° in either of two opposite directions. When the boom is released for deployment, the torque exerted by the bent hinge suffices to overcome parasitic resistance from harnesses and other equipment, so that the two sections of the hinge snap to a straight, rigid condition in the same manner as that of measuring tapes. Issues addressed in development thus far include selection of materials, out-of-plane bending, edge cracking, and separation of plies.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Composite materials, Graphite, Lightweight materials, Materials properties, Spacecraft

Read More >>

Tool for Sampling Permafrost on a Remote Planet

A report discusses the robotic arm tool for rapidly acquiring permafrost (RATRAP), which is being developed for acquiring samples of permafrost on Mars or another remote planet and immediately delivering the samples to adjacent instruments for analysis. The prototype RATRAP includes a rasp that protrudes through a hole in the bottom of a container that is placed in contact with the permafrost surface. Moving at high speed, the rasp cuts into the surface and loads many of the resulting small particles of permafrost through the hole into the container. The prototype RATRAP has been shown to be capable of acquiring many grams of permafrost simulants in times of the order of seconds. In contrast, a current permafrost-sampling system that the RATRAP is intended to supplant works by scraping with tines followed by picking up the scrapings in a scoop, sometimes taking hours to acquire a few grams. Also, because the RATRAP inherently pulverizes the sampled material, it is an attractive alternative to other sampling apparatuses that generate core or chunk samples that must be further processed by a crushing apparatus to make the sample particles small enough for analysis by some instruments.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Soils, Containers, Cutting, Robotics, Test equipment and instrumentation

Read More >>

Special Semaphore Scheme for UHF Spacecraft Communications

A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual- carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

Posted in: Briefs, TSP, Information Sciences, Radio equipment, Telecommunications systems, Spacecraft

Read More >>

Simulator for Testing Spacecraft Separation Devices

A report describes the main features of a system for testing pyrotechnic and mechanical devices used to separate spacecraft and modules of spacecraft during flight. The system includes a spacecraft simulator [also denoted a large mobility base (LMB)] equipped with air thrusters, sensors, and data-acquisition equipment. The spacecraft simulator floats on air bearings over an epoxy-covered concrete floor. This free-flotation arrangement enables simulation of motion in outer space in three degrees of freedom: translation along two orthogonal horizontal axes and rotation about a vertical axis. The system also includes a static stand. In one application, the system was used to test a boltretraction system (BRS) intended for separation of the lifting-body and deorbitpropulsion stages of the X-38 spacecraft. The LMB was connected via the BRS to the static stand, then pyrotechnic devices that actuate the BRS were fired. The separation distance and acceleration were measured. The report cites a document, not yet published at the time of reporting the information for this article, that is said to present additional detailed information.

Posted in: Briefs, Test & Measurement, Finite element analysis, Scale models, Test equipment and instrumentation, Spacecraft

Read More >>

Apparatus for Hot Impact Testing of Material Specimens

It is not necessary to cool and reheat the furnace between tests.An apparatus for positioning and holding material specimens is a major subsystem of a system for impact testing of the specimens at temperatures up to 1,500 °C. This apparatus and the rest of the system are designed especially for hot impact testing of advanced ceramics, composites, and coating materials.

Posted in: Briefs, TSP, Test & Measurement, Ceramics, Coatings, colorants, and finishes, Composite materials, Impact tests, Test equipment and instrumentation

Read More >>

Instrument for Aircraft-Icing and Cloud-Physics Measurements

Data on cloud water content are deduced from hot-wire power a levels. The figure shows a compact, rugged, simple sensor head that is part of an instrumentation system for making measurements to characterize the severity of aircraft-icing conditions and/or to perform research on cloud physics. The quantities that are calculated from measurement data acquired by this system and that are used to quantify the severity of icing conditions include sizes of cloud water drops, cloud liquid water content (LWC),cloud ice water content (IWC), and cloud total water content (TWC).

Posted in: Briefs, Test & Measurement, Measurements, Sensors and actuators, Humidity, Icing and ice detection

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.