Tech Briefs

Active State Model for Autonomous Systems

Autonomous systems would be able to diagnose themselves and respond accordingly. The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection- and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall "health" of the system.

Posted in: Briefs, TSP

Read More >>

Modernizing Fortran 77 Legacy Codes

The investment in established codes is preserved as modern capabilities are added. An incremental approach to modernization of scientific software written in the Fortran 77 computing language has been developed. This approach makes it possible to preserve the investment in legacy Fortran software while augmenting the software with modern capabilities to satisfy expanded requirements. This approach could be advantageous (1) in situations in which major rewriting of application programs is undesirable or impossible, or (2) as a means of transition to major rewriting.

Posted in: Briefs, TSP

Read More >>

Improved Thermal-Insulation Systems for Low Temperatures

Efficient, robust insulation for soft vacuum. Improved thermal- insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low- temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric- power- transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam.

Posted in: Briefs, TSP

Read More >>

Simplified Waterproofing of Aerogels

Silanization is performed in a single treatment at moderate temperature and pressure. A relatively simple silanization process has been developed for waterproofing or rewaterproofing aerogels, xerogels, and aerogel/tile composites, and other, similar low-density, highly microporous materials. Such materials are potentially attractive for a variety of applications — especially for thermal-insulation panels that are required to be thin and lightweight. Unfortunately, such materials are also hydrophilic and tend to collapse after adsorbing water from the air. Hence, an effective means of waterproofing is necessary to enable practical exploitation of aerogels and the like.

Posted in: Briefs, TSP

Read More >>

Oxide Protective Coats for Ir/Re Rocket Combustion Chambers

An improved material system has been developed for rocket engine combustion chambers for burning oxygen/hydrogen mixtures or novel monopropellants, which are highly oxidizing at operating temperatures. The baseline for developing the improved material system is a prior iridium/rhenium system for chambers burning nitrogen tetroxide/monomethyl hydrazine mixtures, which are less oxidizing. The baseline combustion chamber comprises an outer layer of rhenium that provides structural support, plus an inner layer of iridium that acts as a barrier to oxidation of the rhenium. In the improved material system, the layer of iridium is thin and is coated with a thermal fatigue-resistant refractory oxide (specifically, hafnium oxide) that serves partly as a thermal barrier to decrease the temperature and thus the rate of oxidation of the rhenium. The oxide layer also acts as a barrier against the transport of oxidizing species to the surface of the iridium. Tests in which various oxygen/hydrogen mixtures were burned in iridium/rhenium combustion chambers lined with hafnium oxide showed that the operational lifetimes of combustion chambers of the improved material system are an order of magnitude greater than those of the baseline combustion chambers.

Posted in: Materials, Briefs, TSP

Read More >>

Neutral-Axis Springs for Thin-Wall Integral Boom Hinges

A document proposes the use of neutral-axis springs to augment the unfolding torques of hinges that are integral parts of thin-wall composite-material booms used to deploy scientific instruments from spacecraft. A spring according to the proposal would most likely be made of metal and could be either flat or curved in the manner of a measuring tape. Under the unfolded, straight-boom condition, each spring would lie along the neutral axis of a boom. The spring would be connected to the boom by two supports at fixed locations on the boom. The spring would be fixed to one of the supports and would be free to slide through the other support. The width, thickness, and material of the spring would be chosen to tailor the spring stiffness to provide the desired torque margin to assist in deployment of the boom. The spring would also contribute to the stiffness of the boom against bending and torsion, and could contribute some damping that would help suppress unwanted vibrations caused by the deployment process or by external disturbances.

Posted in: Briefs, TSP

Read More >>

Shields for Enhanced Protection Against High-Speed Debris

A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arise mainly from breakup of older spacecraft. The improved shields include exterior "bumper" layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cm3, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape-memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.

Posted in: Briefs, TSP

Read More >>