Tech Briefs

Tool for Coupling a Torque Wrench to a Round Cable Connector

Torque is applied without offset. A tool makes it possible to couple a torque wrench to an externally knurled, internally threaded, round cable connector. The purpose served by the tool is to facilitate the tightening of multiple such connectors (or the repeated tightening of the same connector) to repeatable torques.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>

Excitations for Rapidly Estimating Flight-Control

Parameters Parameters are estimated, in nearly real time, from responses to these excitations. A flight test on an F-15 airplane was performed to evaluate the utility of prescribed simultaneous independent surface excitations (PreSISE) for real-time estimation of flight-control parameters, including stability and control derivatives. The ability to extract these derivatives in nearly real time is needed to support flight demonstration of intelligent flight-control system (IFCS) concepts under development at NASA, in academia, and in industry. Traditionally, flight maneuvers have been designed and executed to obtain estimates of stability and control derivatives by use of a post-flight analysis technique. For an IFCS, it is required to be able to modify control laws in real time for an aircraft that has been damaged in flight (because of combat, weather, or a system failure).

Posted in: Mechanical Components, Briefs

Read More >>

Estimation of Stability and Control Derivatives of an F-15

Parameters can be estimated in nearly real time for use in adaptive flight control. A technique for real-time estimation of stability and control derivatives (derivatives of moment coefficients with respect to control-surface deflection angles) was used to support a flight demonstration of a concept of an indirect-adaptive intelligent flight control system (IFCS). Traditionally, parameter identification, including estimation of stability and control derivatives, is done post-flight. However, for the indirect-adaptive IFCS concept, parameter identification is required during flight so that the system can modify control laws for a damaged aircraft.

Posted in: Mechanical Components, Briefs

Read More >>

Wire-Mesh-Based Sorber for Removing Contaminants From Air

A paper discusses an experimental regenerable sorber for removing CO2 and trace components — principally, volatile organic compounds, halocarbons, and NH3 — from spacecraft cabin air. This regenerable sorber is a prototype of what is intended to be a lightweight alternative to activated-carbon and zeolite- pellet sorbent beds now in use. The regenerable sorber consists mainly of an assembly of commercially available meshes that have been coated with a specially formulated washcoat containing zeolites. The zeolites act as the sorbents while the meshes support the zeolite-containing washcoat in a configuration that affords highly effective surface area for exposing the sorbents to flowing air. The meshes also define flow paths characterized by short channel lengths to prevent excessive buildup of flow boundary layers. Flow boundary layer resistance is undesired because it can impede mass and heat transfer. The total weight and volume comparison versus the atmosphere revitalization equipment used onboard the International Space Station for CO2 and trace-component removal will depend upon the design details of the final embodiment. However, the integrated mesh-based CO2 and trace-contaminant removal system is expected to provide overall weight and volume savings by eliminating most of the trace-contaminant control equipment presently used in parallel processing schemes traditionally used for spacecraft. The mesh-based sorbent media enables integrating the two processes within a compact package. For the purpose of regeneration, the sorber can be heated by passing electric currents through the metallic meshes combined with exposure to space vacuum. The minimal thermal mass of the meshes offers the potential for reduced regeneration- power requirements and cycle time required for regeneration compared to regenerable sorption processes now in use.

Posted in: Materials, Briefs

Read More >>

Low-Density, Creep Resistant Single Crystal Superalloys

Weights of aircraft turbine rotors could be reduced significantly. Several recently formulated nickelbase superalloys have been developed with excellent high-temperature creep resistance, at lower densities than those of currently used nickel-base superalloys. These alloys are the latest products of a continuing effort to develop alloys that have even greater strength-toweight ratios, suitable for use in turbine blades of aircraft engines. Mass densities of turbine blades exert a significant effect on the overall weight of aircraft. For a given aircraft, a reduction in the density of turbine blades enables design reductions in the weight of other parts throughout the turbine rotor, including the disk, hub, and shaft, as well as supporting structures in the engine. The resulting total reduction in weight can be 8 to 10 times that of the reduction in weight of the turbine blades.

Posted in: Materials, Briefs, TSP

Read More >>

Aerogels for Thermal Insulation of Thermoelectric Devices

Energy-conversion efficiencies would be increased and operational lifetimes prolonged. Silica aerogels have been shown to be attractive for use as thermal insulation materials for thermoelectric devices. It is desirable to thermally insulate the legs of thermoelectric devices to suppress lateral heat leaks that degrade thermal efficiency. Aerogels offer not only high thermal insulation effectiveness, but also a combination of other properties that are especially advantageous in thermoelectric device applications.

Posted in: Materials, Briefs, TSP

Read More >>

Nanotube Dispersions Made With Charged Surfactant

Dispersions (including monodispersions) of nanotubes in water at relatively high concentrations have been formulated as prototypes of reagents for use in making fibers, films, and membranes based on single-walled carbon nanotubes (SWNTs). Other than water, the ingredients of a dispersion of this type include one or more charged surfactant( s) and carbon nanotubes derived from the HiPco™ (or equivalent) process. Among reagents known to be made from HiPco™ (or equivalent) SWNTs, these are the most concentrated and are expected to be usable in processing of bulk structures and materials. Test data indicate that small bundles of SWNTs and single SWNTs at concentrations up to 1.1 weight percent have been present in water plus surfactant. This development is expected to contribute to the growth of an industry based on applied carbon nanotechnology. There are expected to be commercial applications in aerospace, avionics, sporting goods, automotive products, biotechnology, and medicine.

Posted in: Materials, Briefs

Read More >>