Tech Briefs

Sampling and Control Circuit Board for an Inertial Measurement Unit

John H. Glenn Research Center, Cleveland, Ohio Scientists at NASA’s Glenn Re - search Center have developed a circuit board that serves as a control and sampling interface to an inertial measurement unit (IMU). The circuit board provides sampling and communication abilities that allow the IMU to be sampled at precise intervals. The data is minimally processed onboard and returned to a separate processor for inclusion in an overall system. The circuit board allows the normal overhead associated with IMU data collection to be performed outside of the system processor, freeing up time to run intensive algorithms in parallel. This Glenn technology consists of the circuit schematic, board layout, and microcontroller firmware for the IMU sampling and control circuit board.

Posted in: Briefs, Electronics & Computers

Read More >>

Efficient Radiation Shielding Through Direct Metal Laser Sintering

Goddard Space Flight Center, Greenbelt, Maryland Functional and parametric degradation of microcircuits due to total ionizing dose (TID) often poses serious obstacles to deployment of critical state-of-the-art (SOTA) technologies in NASA missions. Moreover, because device dielectrics in which such degradation occurs vary from one fabrication lot to the next, these effects must be reevaluated on a lot-by-lot basis. Often, the most effective mitigation against TID degradation is the addition of radiation shielding to the electronics box. Unfortunately, shielding materials can add significant amounts of mass to a system, particularly when vulnerable parts require shielding over 4π steradians. One method for reducing mass is to apply spot shielding located only on the critical components that require it. Reduced box- and/or spacecraft-level shielding will necessitate more complex spot shielding to protect the component from the omnidirectional radiation environment.

Posted in: Briefs, Electronics & Computers

Read More >>

Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

Applications for the strong, flexible material include thermal insulation and lightweight sandwich structures. John H. Glenn Research Center, Cleveland, Ohio NASA-developed polyimide aerogels are 500 times stronger than conventional silica aerogels. The innovative aerogels represent a revolutionary advance over fragile silica aerogels because they are highly flexible and foldable in thin film form. As a thin film, they can be used to insulate industrial pipelines, automotive shields, and temporary housing structures, and can be used within protective clothing such as firefighting jackets, space suits, and parkas. As a thicker part, they can be easily molded to a shape, or sanded and machined to provide insulation as well as mechanical support. No other aerogel possesses the compressive and tensile strength of the NASA innovation while still retaining its ability to be flexibly folded to contour to whatever shape is needed.

Posted in: Briefs, Materials

Read More >>

Catalytic Oxidation of Organic Contaminants at Reduced Pressure

Marshall Space Flight Center, Alabama The current technology for catalytic oxidation of aqueous organic contaminants at elevated temperature and pressure works well at operating conditions of 265 °F and 70 psia with effluent TOCs (total organic carbon) of less than 0.5 ppm. However, it does not perform well at the reduced temperature, i.e., sub-water-boiling temperature (200 °F), and the reduced pressure such as ambient pressure (14.7 psia) as indicated by the effluent TOCs approximately the same as feed TOC.

Posted in: Briefs, Materials

Read More >>

Approach for Achieving Flame Retardancy While Retaining Physical Properties in a Compatible Polymer Matrix

John F. Kennedy Space Center, Florida NASA’s Kennedy Space Center (KSC) seeks to license its Advanced Fire Retardant Materials to industry. KSC’s scientists have developed processes and know-how to impart fire retardancy to common polymers such as nylons, polyesters, and acrylics. NASA developed this technology for use in personnel protective systems for launch pad personnel engaged in hazardous materials (HAZMAT) operations. The invention provides polymer blends containing polyhydroxyamide and one or more flammable polymers. The polymer blends are flame-retardant and have improved durability and heat stability compared to the flammable polymer portion of the blends.

Posted in: Briefs, Materials

Read More >>

Metal/Fiber Laminate and Fabrication Using a Porous Metal/Fiber Preform

This technology can be used in aeronautics, pressure vessels and storage tanks, ballistic protection, automotive structures, and composite doors and windows. Langley Research Center, Hampton, Virginia NASA’s Langley Research Center has developed a new technique to enable the preparation of metal/composite hybrid laminates, also known as fiber metal laminates (FML), by depositing metal directly onto fabric using a plasma deposition process. FMLs provide a useful combination of structural and functional properties for both aerospace and non-aerospace applications. Currently, FMLs are prepared in a compression process utilizing a press or autoclave with metallic layers (foils) sandwiched between layers of glass or graphite prepreg (preimpregnated fibers with a matrix resin). The NASA process deposits the metal on the fiber via plasma deposition. The porosity of the coated fabric allows for resin infusion.

Posted in: Briefs, Materials

Read More >>

Tension Stiffened and Tendon Actuated Manipulator

This configuration offers mechanical advantage and improved efficiency over existing arms that use weighty gearboxes and motors. Langley Research Center, Hampton, Virginia NASA’s Langley Research Center is developing a robotic arm with lightweight joints that provide a wide range of motion. The envisioned design provides users with a long reach and numerous degrees of freedom. The arm, ideal for use in aquatic environments or for manipulation of light terrestrial loads, consists of articulating booms connected by antagonistic cable tension elements. The arm elements are structurally efficient and lightweight, and support compact packaging. The inherent mechanical advantage provided by the tendon articulation allows the use of small, efficient motor systems. The manipulator can be scaled over a large range from 10 m (load-bearing arm) to over 1000 m (submersible or float-supported arm). Current efforts are focusing on a 15-m prototype and a 300-m subsystem to test the unique robotic architecture. NASA is seeking partners to assist with the development of its concept system for specific applications.

Posted in: Briefs, Manufacturing & Prototyping

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.