Tech Briefs

Metal Stamping Design Guidelines

Metal Stamping provides an economical way to produce quantities of parts that can possess many qualities, including strength, durability, wear resistance, good conductive properties, and stability. In this paper, we are sharing some ideas that can help you design a part that optimizes all the features that the metal stamping process offers.

Posted in: Briefs, TSP, Aeronautics, Materials


Heading Versus Tilt Chart for Assessing HGA Occlusion and Flop Risk in MSL Operations

This approach is useful for rovers on Mars or other celestial bodies to point the antenna toward the Earth to transmit data without obstructions to the tracking stations. NASA’s Jet Propulsion Laboratory, Pasadena, California The Mars Science Laboratory (MSL) high-gain antenna (HGA) sits low on the deck, leaving the sky occluded in many directions by other parts of the rover. Each drive must end with the rover at a heading where the Earth will be unoccluded during the next HGA communications pass. This is a multidimensional problem that can take considerable time to assess in detail. For a portion of heading/tilt space, the Earth track starts outside joint limits for one kinematic pointing solution, and ends outside joint limits for the other. Tracking would either stop at the joint limit, or go off Earth point (“flop”) in the middle of the pass in order to change kinematic solutions to complete the pass. Special attention to uplink must be made when a drive ends at a heading where there is risk of a flop.

Posted in: Briefs, TSP, Machinery & Automation, Robotics, Antennas, Spacecraft


Rapid Forest Triage by Sub-Canopy Micro Air Vehicles

Applications include rapid assessment of biomass for commercial forestry and carbon offsets. NASA’s Jet Propulsion Laboratory, Pasadena, California Today, tree distribution maps can only be generated manually in a very time-consuming process, and real-time microclimate mapping of a large 3D volume under tree canopy is not possible. A prototype small quadrotor unmanned aerial vehicle (UAV) system was developed that is able to maneuver in cluttered environments like forests, and under tree canopy to map tree distributions from 3D point clouds gathered from an onboard stereo vision system. The UAV uses a small onboard sensor board to record micro-climate parameters during flight.

Posted in: Briefs, TSP, Machinery & Automation, Robotics, Cartography, Sensors and actuators, Weather and climate, Unmanned aerial vehicles


Deployable Antenna Circuit Board Material Design and Fabrication Process

This technology has applications in solar arrays for small satellites.The Integrated Solar Array and Reflectarray (ISARA) antenna requires a rugged circuit board material that will meet the following requirements: (1) remains sufficiently flat over the required operating temperature range with solar cells mounted, and under full solar illumination, including heat dissipation due to ≈30% efficiency solar cells; (2) provides a sufficiently high-quality RF-grade circuit board material needed to print the reflectarray antenna; (3) is sufficiently thin (<2.5 mm) to fit within the available stowage volume; and (4) has low mass density (≈5 kg/m2).

Posted in: Briefs, TSP, Electronics, Electronics & Computers, Antennas, Integrated circuits, Fabrication


Mini-Stamp as a Micro-Display for At-a-Glance Subsystem Information for DSN Links

NASA’s Jet Propulsion Laboratory, Pasadena, California Operators of the Deep Space Network (DSN) attend to numerous tasks with the overall goal of providing continuous support for the world’s deep space missions. This high-stakes operations environment requires operators to understand the state of the DSN and predict what will happen next. Under the Follow-the-Sun initiative that requires remote operations of the highly complex telecommunications equipment, operators will need to remain aware of the state of the entire network rather than just their own facility, and transition fluidly between periods of low activity and periods of high demand.

Posted in: Briefs, TSP, Communications, Antennas, Telecommunications systems


Ka-Band Parabolic Deployable Antenna (KaPDA)

This technology provides high-data-rate communication to enable high-fidelity instruments and deep space, interplanetary missions.CubeSats provide the ability to conduct relatively inexpensive space missions. Over the past several years, technology and launch opportunities for CubeSats have exploded, enabling a wide variety of missions. However, as instruments become more complex and CubeSats travel deeper into space, data communication rates become an issue as highlighted by a recent NASA centennial challenge proposal. A Ka-band highgain antenna would provide a ≈100× increase of data communication rates over an S-band high-gain antenna, and a ≈10,000× increase over an X-band patch antenna of the same input power, enabling high-rate data communication from deep space or the use of dataintensive instruments from low Earth orbit (LEO).

Posted in: Briefs, TSP, Communications, Antennas, Satellite communications


Deployable Perimeter Truss with Blade Reel Deployment Mechanism

Applications include pop-up tents, deployable deck awnings, and pop-up lawn chairs.Solar sail technology depends heavily on the total surface area of the sail. In other words, minimizing mass and volume of its support structure is the main objective, particularly when it comes to launch configuration, i.e. mass, volume constraints, etc. There is a need to develop a low-cost concept of a deployable support structure that can stow in the EELV Secondary Payload Adapter (ESPA) volume, and carries as much sail material as possible. This structure must then be able to deploy the sail material out, and provide the surface area needed.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Solar energy, Packaging, Lightweighting, Spacecraft


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.