Tech Briefs

Illuminating Permanently Shadowed Lunar Regions Using a Solar Sail

NASA’s Jet Propulsion Laboratory, Pasadena, California Sunlight can be reflected into permanently shadowed regions (PSRs) using S/C solar sails in order to detect and confirm the presence and distribution of water ice cold-trapped in PSRs in lunar polar craters. This reflected light is then viewed with an optical spectrometer.

Posted in: Briefs, Optics

Read More >>

Hardening Electronics Against Difficult High-Temperature Environments

This technology provides extended performance for enhanced digital electronics while significantly increasing mean time between failures (MTBF). Silicon Space Technology (SST), Austin, Texas A new technology delivers temperature hardening in a number of products at the CMOS process level while increasing overall product reliability and longevity. Providing solutions that operate successfully in extreme temperature applications in the oil and gas, space, automotive, aerospace, and medical industries, as well as broader applications like industrial automation and high-performance computing, is paramount. As a result of the technology, system engineers are able to extend the limits of what’s possible in designing ruggedized and broader electronics for today’s extreme and difficult environments.

Posted in: Briefs

Read More >>

Stacked Capacitor Special Lead Adapter

Goddard Space Flight Center, Greenbelt, Maryland The current installation method for tall, stacked capacitors is very cumbersome because the lead form is very sharp and prone to solder cracking due to thermal cycling. An astringent installation process was developed to obtain the best chance of a successful solder joint with a proper heel fillet so the chance of cracking is minimized.

Posted in: Briefs, TSP

Read More >>

Nanoscale Vacuum Channel Transistor

Ames Research Center, Moffett Field, California This invention presents a nanoscale vacuum tube or vacuum transistor fabricated entirely using current silicon integrated circuit manufacturing techniques. Vacuum is better for electron transport than any semiconductor since there is no electron scattering. In addition, vacuum devices are immune to radiation. Nevertheless, vacuum devices lost out to silicon devices due to ease of large-scale manufacturing, robustness, versatility, and low cost. Here, the best of vacuum and silicon technologies are combined to produce nanoscale vacuum transistors that are amenable to large wafer fabrication and are inexpensive, while providing exceptional performance.

Posted in: Briefs

Read More >>

Aluminum Rocket Engine Injector Fabricated Using 3D Additive Manufacturing

Marshall Space Flight Center, Alabama Liquid rocket engine injectors can be extremely expensive to manufacture and hard to iterate to achieve high performance. Internal sealing points can also be the source of reliability issues. The technology disclosed here covers the application of a 3D additive manufacturing (AM) process to produce a functional aluminum injector for liquid propellant rocket engines, along with injector and overall engine design features that optimize the application of such processes to improve performance, reliability, and affordability relative to components produced using standard machining processes and designs. Aluminum was used for the injector instead of higher- temperature metals like stainless steel because its thermal conductance properties provide more opportunity to leverage the cooling potential of liquid oxygen and other cryogenic propellants.

Posted in: Briefs

Read More >>

Making Flexible Ablators that are Flexible Char Formers

Ames Research Center, Moffett Field, California An approach was developed for making low-density, flexible ablators for a thermal protection system (TPS) from a flexible fibrous carbon substrate and a polymer resin. The material is foldable and stowable, and can be deployed in space without compromising performance. In addition, the material can be stowed in space for very long periods of time (years) without compromising deployability or performance. These flexible ablators offer an alternative to rigid TPS materials, thereby reducing design complexity and cost. On charring, the flexible ablative TPS retains its flexibility. After charring, the TPS has comparable flexibility and mechanical properties to the virgin material.

Posted in: Briefs

Read More >>

Method for Providing Semiconductors Having Self-Aligned Ion Implant

Refined self-aligned ion implantation for improved SiC high-temperature transistors. John H. Glenn Research Center, Cleveland, Ohio This is a modification to technology for realizing durable and stable electrical functionality of high-temperature transistors. This modification is believed crucial to experimental implementation of SiC junction field effect transistors that electrically operated continuously at 500 °C for over 10,000 hours in an air ambient with less than 10% change in operational transistor parameters.

Posted in: Briefs

Read More >>