Tech Briefs

Advanced Pulse Compression System and Testbed

Industrial applications include 3D machine vision systems that rely on radar for target identification and obstacle avoidance. Goddard Space Flight Center, Greenbelt, Maryland Detection of low-level water clouds from space is one of the outstanding challenges in radar remote sensing. Spaceborne remote sensing is the only means of assessing the distribution and variability of cloud cover on a global basis. Uncertainties in models of the Earth’s heating budget will persist until CloudSat and follow-on missions such as ACE (Advanced Composition Explorer), with enhanced radar capabilities, complete their missions. Detecting weak scatters at lower altitudes presents significant challenges. Millimeter-wave radars offer the only chance to measure these scatters from space. Unfortunately, the peak power available at Ka and W-band — desirable wavelengths for cloud remote sensing — does not provide adequate sensitivity at the resolution required. For many spaceborne radars, pulse compression techniques are used to overcome the limitations in peak power and take advantage of the average power available. But the backscatter from clouds, even at W-band, can be 7 to 8 orders of magnitude weaker than the surface backscatter. In order to use pulse compression techniques, peak range sidelobes need to be suppressed by upwards of 80 dB.

Posted in: Electronics & Computers, Briefs

Read More >>

Quasi-Static Electric Field Generator

This generator is an essential component for human-safe electric field imaging for military and civilian security applications. Langley Research Center, Hampton, Virginia This innovation is an electric field “illumination” system that is a companion component to the e-Sensor. This generator, when combined with the e-Sensor, enables a new, nondestructive inspection technology called electric field imaging (EFI) by producing spatially uniform, large-magnitude, quasi-static electric fields with human-safe currents (supporting only microampere currents) over large areas or large distances. These fields “illuminate” the objects to be inspected, and enable the EFI method to quantify the distortion of the applied electric field of the invention to detect, locate, and characterize materials present (liquid, solid, insulating, semiconducting, conducting, metallic, non-metallic, polymer, ceramic, composite, etc.), material variations, material damage, material age, and to identify hidden structures.

Posted in: Electronics & Computers, Briefs

Read More >>

Hydraulic High-Pressure Valve Controller Using the In Situ Pressure Difference

This technology is applicable to any system or device requiring high-pressure-differential valves. NASA’s Jet Propulsion Laboratory, Pasadena, California Various applications exist where high-pressure valves are required, but the problem for control of such valves lies in that they have to move against a strong pressure differential that may require significant force, energy, and large actuators. The solution to this problem is to take advantage of the in situ pressure differential to operate valves by opening small valves to change the pressure on either chamber of a hydraulic cylinder that is connected to the valve’s moving element.

Posted in: Mechanical Components, Briefs

Read More >>

Safely Testing Parachute-Based Extraction Systems

Functional testing can be conducted under a wide range of performance parameters. Lyndon B. Johnson Space Center, Houston, Texas This invention relates to the safe, reliable, and repeatable testing under external load of the Extraction Force Transfer Coupling (EFTC) currently used in the extraction of airdrop platforms from both the C-17 and C-130 cargo transport aircraft. The invention enables functional testing of the EFTC at various loading angles and load magnitudes, as well as in different hardware configurations, to verify its performance in both nominal and off-nominal extraction scenarios.

Posted in: Mechanical Components, Briefs

Read More >>

Hybrid Gear

This gear can transfer the same level of torque as an all-metallic gear, but with lower weight and modified vibration/noise. John H. Glenn Research Center, Cleveland, Ohio Reducing stiffness-induced gear noise and making lighter-weight gearing components would be a substantial advantage over the current all-metallic configuration. The use of composites to join metallic hubs to the metallic gear rim would reduce manufacturing costs of large aerospace gears, with weight reductions and modified noise/vibration response. All-metallic gearing components do little to dampen the gear meshing noise induced by the nonlinear tooth stiffness during the meshing process. With a composite web, this metallic path for vibration and noise transfer would be eliminated and alter the resultant transmitted noise/vibration.

Posted in: Mechanical Components, Briefs

Read More >>

Flap Side Edge Liners for Airframe Noise Reduction

This concept would reduce objectionable aircraft noise for communities surrounding airports. Langley Research Center, Hampton, Virginia One of the more critical constraints to the continued growth of air traffic is the related concern regarding aircraft noise. This concern has resulted in increasingly stringent noise restrictions for airports, both nationally and internationally. One of the major stretch goals for NASA is to develop noise reduction concepts that will allow the objectionable noise to be contained within the boundaries of a normal airport.

Posted in: Aerospace, Briefs

Read More >>

GEO-CAPE Airborne Simulator (GCAS)

Goddard Space Flight Center, Greenbelt, Maryland This IRAD (Internal Research and Development) project was conceived as an aircraft instrument and designed with specifications that are closely aligned with the science requirements of the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. The work has been used to both advance the technology readiness as well as refine the discipline science measurement requirements for the GEO-CAPE effort. The project consisted of integrating a two-channel UV/VIS/NIR spectrograph with command and control hardware and environmental enclosure suitable for autonomous flight onboard the Langley B-200 and other airborne platforms.

Posted in: Aerospace, Briefs

Read More >>