Tech Briefs

Rocket Vent Design With Variable Flow Control and Rain Protection

Rugged design will ensure operation from pre-flight through flight. Marshall Space Flight Center, Alabama This innovation is a rocket purge vent design that can control and balance flow across multiple vents and across very large gas flow ranges while keeping water or other undesirable gases from entering into the vented space. When changing purge rates, this device adapts to the different flow rates to maintain a very low internal delta pressure. It provides a vent design that can withstand high winds and blowing rain without allowing water entry. With the rugged design, it can operate during all rocket operational phases, from pre-flight operations through flight. This design is useful for any device needing a one-way valve type purge or general air vent where rain and gas reverse entry must not occur.

Posted in: Mechanical Components, Briefs

Read More >>

Turbo-Brayton Converter for Fission Surface Power Applications

John H. Glenn Research Center, Cleveland, Ohio Producing electric power for space applications is challenging. Although short-term missions can use batteries or fuel cells, these sources are not practical for durations longer than one month. Photovoltaics become less attractive as the distance from the Sun increases, and they are ineffective in Sun-shadowed environments. For these types of missions, thermal-to-electric converters can produce electric power from nuclear heat sources. Potential converter technologies include thermoelectric, Stirling, Brayton, Rankine, thermophotovoltaic, and alkali metal thermal to electric conversion (AMTEC).

Posted in: Mechanical Components, Briefs

Read More >>

Vibration Ring

John H. Glenn Research Center, Cleveland, Ohio Machine vibration often originates with rotating driveline components such as rotors, gears, bearings, and fans. Such vibration is the source of unwanted noise and can be destructive to the machine. The vibration ring is a mechanism that provides an indirect damping effect, and is rigid enough to be mounted within the driveline. The mechanical structure of the vibration ring responds to vibratory excitation by stressing an embedded piezoelectric material. The material generates an electric charge, which is dissipated though an electric circuit. The net result is a reduction of vibration energy.

Posted in: Mechanical Components, Briefs

Read More >>

Locomotion of Amorphous Surface Robots

These robotic locomotion concepts could replace legs, tracks, and wheels. Langley Research Center, Hampton, Virginia The proposed techniques rely on three principal concepts: (1) controlling the polarity of electromagnets, (2) circulating fluid through a compartmentalized bladder, and (3) expanding and deflating polymers. These designs would allow amorphous robots to move across a surface without conventional wheels or legs. The advantages of amorphous robots would be many, including greater mobility, passive shape changing to allow the robot to pass through odd-shaped openings, and immunity to dust and contamination. This idea is completely scalable from small to enormous robots.

Posted in: Mechanical Components, Briefs

Read More >>

Fluid Disconnect Cooling Technique

The technique determines if temperature is causing leakage through the disconnect. John F. Kennedy Space Center, Florida The purpose of this innovation is to simulate the space temperature environment onto a fluid disconnect. This environment is to be maintained for a long period of time (48 hours) at a controlled temperature [6 ±2 °F(≈–14.4 ±1.1 °C)] to determine if temperature is causing leakage through the disconnect.

Posted in: Mechanical Components, Briefs

Read More >>

HeartBeatID – Heart Electrical Actions as Biometric Indicia

Ames Research Center, Moffett Field, California One or more biometric indicia, such as fingerprints, voice prints, retinal scans, and facial features, are often used to identify or authenticate the identity of a user seeking access to a given resource. Cardiac muscle is myogenic and is capable of generating an action potential and depolarizing and repolarizing signals from within the muscle. An intrinsic conduction system (ICS), a group of specialized cardiac cells, passes an electrical signal throughout the heart as a PQRST (Preview, Question, Read, Study, Test) signature.

Posted in: Medical, Briefs

Read More >>

Cryogenic Grinding for Mechanical Abrasion for Hardy Endospores

The method is far superior to conventional mechanical abrasion strategies. NASA’s Jet Propulsion Laboratory, Pasadena, California A comparative analysis was carried out between an emerging cryogenic grinding method and a conventional wet-chemistry/bead-beating endospore disruption approach. After extensive trial and error, it was determined that a regimen of three cryogenic grinding cycles of 2 minutes each was optimum for downstream DNA recovery. Spores embedded in ice exhibited a mere 1-log reduction in recovery following cryo-milling for up to 30 minutes. The observed total spore-borne DNA recovery was quite impressive, as well established, streamlined techniques for extracting DNA from endospores typically recover, at best, ≈10% of the molecules present. To facilitate the nucleic-acid-based testing required to detect and quantify DNA and endospores recovered, this innovation implements cryogenic grinding procedures followed by qPCR (quantitative polymerase chain reaction) methods to verify this novel capture technique.

Posted in: Medical, Briefs

Read More >>