Tech Briefs

Platform for Testing Robotic Vehicles on Simulated Terrain

Slope, ground material, and obstacles can be varied. The variable terrain tilt platform (VTTP) is a means of providing simulated terrain for mobility testing of engineering models of the Mars Exploration Rovers. The VTTP could also be used for testing the ability of other robotic land vehicles (and small vehicles in general) to move across terrain under diverse conditions of slope and surface texture, and in the presence of obstacles of various sizes and shapes.

Posted in: Mechanical Components, Briefs

Read More >>

Low-Cost Propellant Launch From a Tethered Balloon

A document presents a concept for relatively inexpensive delivery of propellant to a large fuel depot in low orbit around the Earth, for use in rockets destined for higher orbits, the Moon, and for remote planets. The propellant is expected to be at least 85 percent of the mass needed in low Earth orbit to support the NASA Exploration Vision. The concept calls for the use of many small (≈10 ton) spin-stabilized, multistage, solid-fuel rockets to each deliver ≈250 kg of propellant. Each rocket would be winched up to a balloon tethered above most of the atmospheric mass (optimal altitude 26 ±2 km). There, the rocket would be aimed slightly above the horizon, spun, dropped, and fired at a time chosen so that the rocket would arrive in orbit near the depot. Small thrusters on the payload (powered, for example, by boil-off gasses from cryogenic propellants that make up the payload) would precess the spinning rocket, using data from a low-cost inertial sensor to correct for small aerodynamic and solid rocket nozzle misalignment torques on the spinning rocket; would manage the angle of attack and the final orbit insertion burn; and would be fired on command from the depot in response to observations of the trajectory of the payload so as to make small corrections to bring the payload into a rendezvous orbit and despin it for capture by the depot. The system is low-cost because the small rockets can be mass-produced using the same techniques as those to produce automobiles and low-cost munitions, and one or more can be launched from a U.S. territory on the equator (Baker or Jarvis Islands in the mid-Pacific) to the fuel depot on each orbit (every 90 minutes, e.g., any multiple of 6,000 per year).

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>

Integral Flexure Mounts for Metal Mirrors for Cryogenic Use

These mounts are compact and relatively inexpensive. Semi-kinematic, six-degree-of-freedom flexure mounts have been incorporated as integral parts of metal mirrors designed to be used under cryogenic conditions as parts of an astronomical instrument. The design of the mirrors and their integral flexure mounts can also be adapted to other instruments and other operating temperatures. In comparison with prior kinematic cryogenic mirror mounts, the present mounts are more compact and can be fabricated easily using Ram-EDM (electrical discharge machining) process.

Posted in: Mechanical Components, Briefs

Read More >>

Fastener Options for Clinching Into Stainless

Differing stainless hardness levels and degrees of corrosion resistance can complicate fastener selection. Designers often turn to self-clinching fasteners when they need a practical method to provide threads in thin metal sheets. The fasteners install permanently, reduce hardware, and promote thinner and lighter designs. In stainless applications, though, designers may run into some particularly hard choices. A prevalent misconception is that all stainless self-clinching fasteners will perform as intended in all stainless sheets. But, the relative hardness of the fastener and sheet looms as an overriding influence, because self-clinching requires that the fastener always be harder than its host sheet. In general, installation of self-clinching fasteners is accomplished by pressing the fastener into place in a properly sized drilled or punched hole. This process causes displaced sheet material (softer than the fastener) to cold-flow into a specially designed annular recess in the shank or pilot of the fastener, permanently locking the fastener in place.

Posted in: Mechanical Components, Briefs

Read More >>

Single-Wall Carbon Nanotube Anodes for Lithium Cells

Capacities are greater than those of graphite anodes. In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.

Posted in: Materials, Briefs

Read More >>

Microsphere Insulation Panels

Thermal performance and lifetime exceed those of foam insulation. Microsphere insulation panels (MIPs) have been developed as lightweight, long lasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. Whether preformed or applied in place, foam insulation deteriorates fairly rapidly: on cryogenic transfer lines, it has a life expectancy of about three years. Vacuum-jacketed insulation is expensive and heavy. For both foam and vacuum-jacketed insulation, intensive maintenance is necessary to keep performance at or near its original level. Relative to a polyurethane foam insulation panel, a comparable MIP offers greater thermal performance and longer service life at approximately the same initial cost.

Posted in: Materials, Briefs

Read More >>

Tantalum-Based Ceramics for Refractory Composites

Compositions can be graded from porous substrates to impervious outer layers. A family of tantalum-based ceramics has been invented as ingredients of high-temperature composite insulating tiles. These materials are suitable for coating and/or permeating the outer layers of rigid porous (foamlike or fibrous) ceramic substrates to (1) render the resulting composite ceramic tiles impervious to hot gases and (2) enable the tiles to survive high heat fluxes at temperatures that can exceed 3,000 °F (≈1,600 °C). Originally intended for use on the future space exploration vehicles, insulating tiles made with these materials may also be useful in terrestrial applications (e.g., some industrial processes) in which there are requirements to protect against flows of hot, oxidizing gases.

Posted in: Materials, Briefs

Read More >>