Tech Briefs

Hybrid Image-Plane/Stereo Manipulation

This method is robust in the face of calibration errors. Hybrid Image-Plane/Stereo (HIPS) manipulation is a method of processing image data, and of controlling a robotic manipulator arm in response to the data, that enables the manipulator arm to place an end-effector (an instrument or tool) precisely with respect to a target (see figure). Unlike other stereoscopic machine-vision-based methods of controlling robots, this method is robust in the face of calibration errors and changes in calibration during operation.

Posted in: Briefs, TSP

Read More >>

Partitioning a Gridded Rectangle Into Smaller Rectangles

A relatively simple algorithm yields nearly square, nearly equally sized segments. A relatively simple algorithm, devised for use in an imagedata- compression application, partitions a rectangular pixelated image (or any other rectangle on which a regular rectangular grid has already been superimposed) into a specified number of smaller rectangles, hereafter denoted segments. The algorithm has the following properties: No floating-point operations are needed. The segments tend to be nearly square (in the sense that their widths and heights in pixel units tend to be nearly equal). The segments tend to have nearly equal areas. The algorithm yields valid results (no zero-width or zeroheight segments) as long as the specified number of segments, s, does not exceed the number of pixels (equivalently, the number of grid cells).

Posted in: Briefs, TSP

Read More >>

Digital Radar-Signal Processors Implemented in FPGAs

Processing can be performed onboard at relatively low power. High-performance digital electronic circuits for onboard processing of return signals in an airborne precipitation - measuring radar system have been implemented in commercially available field - programmable gate arrays (FPGAs). Previously, it was standard practice to downlink the radar-return data to a ground station for postprocessing - a costly practice that prevents the nearly - real - time use of the data for automated targeting. In principle, the onboard processing could be performed by a system of about 20 personal - computer-type microprocessors; relative to such a system, the present FPGA-based processor is much smaller and consumes much less power. Alternatively, the onboard processing could be performed by an application-specific integrated circuit (ASIC), but in comparison with an ASIC implementation, the present FPGA implementation offers the advantages of (1) greater flexibility for research applications like the present one and (2) lower cost in the small production volumes typical of research applications.

Posted in: Briefs, TSP

Read More >>

Improved Method of Purifying Carbon Nanotubes

An improved method of removing the residues of fabrication from carbon nanotubes has been invented. These residues comprise amorphous carbon and metal particles that are produced during the growth process. Prior methods of removing the residues include a variety of processes that involved the use of halogens, oxygen, or air in both thermal and plasma processes. Each of the prior methods entails one or more disadvantages, including non-selectivity (removal or damage of nanotubes in addition to removal of the residues), the need to dispose of toxic wastes, and/or processing times as long as 24 hours or more. In contrast, the process described here does not include the use of toxic chemicals, the generation of toxic wastes, causes little or no damage to the carbon nanotubes, and involves processing times of less than 1 hour.

Posted in: Briefs

Read More >>

Patterned Growth of Carbon Nanotubes or Nanofibers

Numerous parameters of deposition conditions, structures, and compositions affect what is grown. A method and apparatus for the growth of carbon nanotubes or nanofibers in a desired pattern has been invented. The essence of the method is to grow the nanotubes or nanofibers by chemical vapor deposition (CVD) onto a patterned catalyst supported by a substrate.

Posted in: Briefs

Read More >>

Lightweight, Rack-Mountable Composite Cold Plate/Shelves

Rack-mountable composite-material structural components that would serve as both shelves and cold plates for removing heat from electronic or other equipment mounted on the shelves have been proposed as lightweight alternatives to allmetal cold plate/shelves now in use. A proposed cold plate/shelf would include a highly thermally conductive face sheet containing oriented graphite fibers bonded to an aluminum honeycomb core, plus an extruded stainless-steel substructure containing optimized flow passages for a cooling fluid, and an inlet and outlet that could be connected to standard manifold sections. To maximize heat-transfer efficiency, the extruded stainless-steel substructure would be connected directly to the face sheet. On the basis of a tentative design, the proposed composite cold plate/shelf would weigh about 38 percent less than does an all-aluminum cold plate in use or planned for use in some spacecraft and possibly aircraft. Although weight is a primary consideration, the tentative design offers the additional benefit of reduction of thickness to half that of the all-aluminum version.

Posted in: Briefs

Read More >>

Open-Source Software for Modeling of Nanoelectronic Devices

The Nanoelectronic Modeling 3-D (NEMO 3-D) computer program has been upgraded to open-source status through elimination of license-restricted components. The present version functions equivalently to the version reported in “Software for Numerical Modeling of Nanoelectronic Devices” (NPO-30520), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 37. To recapitulate: NEMO 3-D performs numerical modeling of the electronic transport and structural properties of a semiconductor device that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantum-mechanical behavior of the device resolved to the atomistic level of granularity. NEMO 3-D solves the applicable quantum matrix equation on a Beowulf- class cluster computer by use of a parallel-processing matrix·vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. A prior upgrade of NEMO 3-D incorporated a capability for a strain treatment, parameterized for bulk material properties of GaAs and InAs, for two tight-binding submodels. NEMO 3-D has been demonstrated in atomistic analyses of effects of disorder in alloys and, in particular, in bulk InxGa1-xAs and in In0.6Ga0.4As quantum dots.

Posted in: Briefs, TSP

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.