Tech Briefs

Managing an Archive of Images

The SSC Multimedia Archive is an automated electronic system to manage images, acquired both by film and digital cameras, for the Public Affairs Office (PAO) at Stennis Space Center (SSC). Previously, the image archive was based on film photography and utilized a manual system that, by today's standards, had become inefficient and expensive. Now, the SSC Multimedia Archive, based on a server at SSC, contains both catalogs and images for pictures taken both digitally and with a traditional, film-based camera, along with metadata about each image. After a "shoot," a photographer downloads the images into the database. Members of the PAO can use a Web-based application to search, view and retrieve images, approve images for publication, and view and edit metadata associated with the images. Approved images are archived and cross-referenced with appropriate descriptions and information. Security is provided by al-lowing administrators to explicitly grant access privileges to personnel to only access components of the system that they need to (i.e., allow only photographers to upload images, only PAO designated employees may approve images).

Posted in: Briefs

Read More >>

MPT Prediction of Aircraft Engine Fan Noise

A collection of computer programs has been developed that implements a procedure for predicting multiple- puretone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise — MPTs. Stagger angle differences as small as 0.1° can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an "unstarted" mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user's computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user's file format using the API. The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh, the second file defines the geometry variations of each blade in a complete fan. Superposition is used to predict the spectra resulting from the geometric variations.

Posted in: Briefs

Read More >>

Rotating Reverse-Osmosis for Water Purification

Rotating Reverse-Osmosis for Water Purification This device would resist fouling. A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse-osmosis membranes are vulnerable to concentration polarization — a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water.

Posted in: Briefs

Read More >>

Robotic End Effectors for Hard-Rock Climbing

End effectors emulate equipment used by human climbers.Pasadena, California Special-purpose robot hands (end effectors) now under development are intended to enable robots to traverse cliffs much as human climbers do. Potential applications for robots having this capability include scientific exploration (both on Earth and other rocky bodies in space), military reconnaissance, and outdoor search and rescue operations.

Posted in: Briefs, TSP

Read More >>

FEA Software Enables Study of Tissue Ablation Dynamics

An improved ablation device model uses a feedback loop to account for varying properties of heated or damaged tissue. Regulatory agencies such as the US FDA must examine new medical devices to ensure that they are safe and effective. Sometimes, devices work successfully despite the fact that the mechanism of how they work isn't fully understood. In these cases, the FDA performs basic research to fill in these knowledge gaps.

Posted in: Briefs

Read More >>

Time-Transfer System for Two Orbiting Spacecraft

A report describes the time-transfer system of the Gravity Recovery and Climate Experiment (GRACE), in which information on the distribution of Earth mass is extracted from position and time measurements for two spacecraft about 200 km apart in a circular, nearly polar orbit. Each spacecraft carriers a Global Positioning System (GPS) receiver, a K/Ka-band ranging (KBR) instrument, and an ultra-stable oscillator (USO) that serves as a clock for the GPS and KBR units.

Posted in: Briefs, TSP

Read More >>

Calculating Mass Diffusion in High-Pressure Binary Fluids

This model could contribute to understanding of high-pressure combustion. A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass- diffusion- coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

Posted in: Briefs, TSP

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.