Tech Briefs

Pattern Matching Software for Machine Vision Applications

The first step of pattern matching always includes a learning process. A “gold” master is used to create a template. This template is used for identification purposes on all subsequent parts. A score is generated depending on how well the object or feature under inspection matches the original template. You can take advantage of pattern matching in applications that include alignment, gauging, and inspection, as reported in “PCBased Software for Pattern, Color, and Color Pattern Matching”, Photonics Tech Briefs (only in select issues of NASA Tech Briefs), June 2003, page 10a.

Posted in: Software, Briefs

Read More >>

Improved Process for Fabricating Carbon Nanotube Probes

An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure. This NASA technology is being commercialized through Convergent Science and Technology Inc. ().

Posted in: Briefs, TSP

Read More >>

Explosion Welding for Hermetic Containerization

There is no need to decontaminate the outside of the container. Figure 1. The Explosion Seals the Samples in the container while simultaneously excluding previous exterior container contamination from the clean environment.Figure 2. Sacrificial Metal is squeezed out, the container walls are cut, and the container walls are welded together on both sides of the cut.A container designed for storing samples of hazardous material features a double wall, part of which is sacrificed during an explosion-welding process in which the container is sealed and transferred to a clean environment. The major advantage of this container sealing process is that once the samples have been sealed inside, the outer wall of what remains of the container is a clean surface that has not come into contact with the environment from which the samples were taken. Thus, there is no need to devise a decontamination process capable of mitigating all hazards that might be posed by unanticipated radioactive, chemical, and/or biological contamination of the outside of the container. The container sealing method was originally intended to be used to return samples from Mars to Earth, but it could also be used to store samples of hazardous materials, without the need to decontaminate its outer surface.

Posted in: Briefs, TSP

Read More >>

Burn-Resistant, Strong Metal-Matrix Composites

Ceramic particulate fillers increase burn resistances and specific strengths of metals. Ceramic particulate fillers increase the specific strengths and burn resistances of metals: This is the conclusion drawn by researchers at Johnson Space Center's White Sands Test Facility. The researchers had theorized that the inclusion of ceramic particles in metal tools and other metal objects used in oxygen-rich atmospheres (e.g., in hyperbaric chambers and spacecraft) could reduce the risk of fire and the consequent injury or death of personnel. In such atmospheres, metal objects act as ignition sources, creating fire hazards. However, not all metals are equally hazardous: some are more burn-resistant than others are. It was the researchers' purpose to identify a burn-resistant, high-specific-strength ceramic-particle/metal-matrix composite that could be used in oxygen-rich atmospheres.

Posted in: Briefs

Read More >>

Better VPS Fabrication of Crucibles and Furnace Cartridges

The choice of alloy composition and processing parameters is important. An experimental investigation has shown that by (1) vacuum plasma spraying (VPS) of suitable refractory metal alloys on graphite mandrels, and then (2) heat-treating the VPS alloy deposits under suitable conditions, it is possible to fabricate improved crucibles and furnace cartridges that could be used at maximum temperatures between 1,400 and 1,600 °C and that could withstand chemical attack by the materials to be heated in the crucibles and cartridges. Taken by itself, the basic concept of fabricating furnace cartridges by VPS of refractory materials onto graphite mandrels is not new; taken by itself, the basic concept of heat treatment of VPS deposits for use as other than furnace cartridges is also not new; however, prior to this investigation, experimental crucibles and furnace cartridges fabricated by VPS had not been heat treated and had been found to be relatively weak and brittle. Accordingly, the investigation was directed toward determining whether certain combinations of (1) refractory alloy compositions, (2) VPS parameters, and (3) heat-treatment parameters could result in VPS-fabricated components with increased ductility.

Posted in: Briefs, TSP

Read More >>

Antistatic Polycarbonate/Copper Oxide Composite

Surface resistance lies in the desired range. A composite material consisting of polycarbonate filled with copper oxide has been found to be suitable as an antistatic material. This material was developed to satisfy a requirement for an antistatic material that has a mass density less than that of aluminum and that exhibits an acceptably low level of outgassing in a vacuum.

Posted in: Briefs, TSP

Read More >>

Stable, Thermally Conductive Fillers for Bolted Joints

A commercial structural epoxy [Super Koropon (or equivalent)] has been found to be a suitable filler material for bolted joints that are required to have large thermal conductances. The contact area of such a joint can be less than 1 percent of the apparent joint area, the exact value depending on the roughnesses of the mating surfaces. By occupying the valleys between contact peaks, the filler widens the effective cross section for thermal conduction. In comparison with prior thermal joint-filler materials, the present epoxy offers advantages of stability, ease of application, and —as a byproduct of its stability — lasting protection against corrosion. Moreover, unlike silicone greases that have been used previously, this epoxy does not migrate to contaminate adjacent surfaces. Because this epoxy in its uncured state wets metal joint surfaces and has low viscosity, it readily flows to fill the gaps between the mating surfaces: these characteristics affect the overall thermal conductance of the joint more than does the bulk thermal conductivity of the epoxy, which is not exceptional. The thermal conductances of metal-to-metal joints containing this epoxy were found to range between 5 and 8 times those of unfilled joints.

Posted in: Briefs, TSP

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.