Tech Briefs

Design for Improving the Flatness of Solar Sails

An optically flat solar sail could be useful in optical communication and solar energy applications. NASA’s Jet Propulsion Laboratory, Pasadena, California This work describes a discontinuous or segmented mirror whose overall flatness is less dependent on the limited tension that can be supplied by the booms. A solar sail is a large, nominally flat sheet of extremely thin reflectorized film rigidly attached to a spacecraft, enabling propulsion via solar radiation pressure. Rip-stop fibers embedded in the backside of the film — with diameters ≈100× the thickness of the film — are commonly used to arrest tear propagation, which can easily occur in the handling and/or deployment of these gossamer-thin structures. Typically, the thin film or membrane that is the sail is systematically folded to enable both volumetrically compact transportation to space and mechanized deployment. It is the aggressive folding and creasing of the thin film that limits the ultimate flatness that can be achieved.

Posted in: Briefs, TSP, Solar Power

Read More >>

Reactionless Drive Tube Sampling Device and Deployment Method

Springs and a counter-mass create a powerful and stable sampling device. NASA’s Jet Propulsion Laboratory, Pasadena, California A sampling device and a deployment method were developed that allow collection of a predefined sample volume from up to a predefined depth, precise sampling site selection, and low impact on the deploying spacecraft. This device is accelerated toward the sampled body, penetrates the surface, closes a door mechanism to retain the sample, and ejects a sampling tube with the sample inside. At the same time the drive tube is accelerated, a sacrificial reaction mass can be accelerated in the opposite direction and released in space to minimize the momentum impact on the spacecraft. The energy required to accelerate both objects is sourced locally, and can be a spring, cold gas, electric, or pyrotechnic. After the sample tube is ejected or extracted from the drive tube, it can be presented for analysis or placed in a sample return capsule.

Posted in: Briefs, TSP, Motors & Drives

Read More >>

Nozzle Heat Flux Gauge

Marshall Space Flight Center, Alabama This innovation is a tungsten-rhenium gauge that can be placed into an aft exit cone of a rocket motor. It will measure heat flux with time for the full duration of the RSRM (reusable solid rocket motor) nozzle environment with equal response time.

Posted in: Briefs, Measuring Instruments

Read More >>

Rotary-Hammer Core Sample Acquisition Tool

This tool can be used for drilling in construction, mining, or scientific research applications. NASA’s Jet Propulsion Laboratory, Pasadena, California NASA is developing technologies to enable in situ analysis and sample acquisition from planetary bodies. Missions to these diverse locations require autonomous, highly customizable, reliable tools. A tool capable of core generation, capture, and transfer, and customizable for different missions, would be very valuable.

Posted in: Briefs, TSP

Read More >>

Fabrication of Single-Mode, Distributed-Feedback, Interband Cascade Lasers

Applications exist in the oil and gas industry, automobile emissions monitors, breath analyzers, and fire detection equipment. NASA’s Jet Propulsion Laboratory, Pasadena, California Type-II interband cascade lasers (ICLs) based on the GaSb material system represent an enabling technology for laser absorption spectroscopy in the 3-to-5-μm wavelength range. Instruments operating in this spectral regime can precisely match strong absorption lines of several gas molecules of interest in atmospheric science and environmental monitoring, specifically methane, ethane, other alkanes, and inorganic gases. Compared with non-semiconductor-based laser technologies, ICLs can be made more compact and power efficient, ultimately leading to more portable, robust, and manufacturable spectroscopy instruments.

Posted in: Briefs, Lasers & Laser Systems, Optics, Photonics

Read More >>

Developing Ceramic-Like Bulk Metallic Glass Gears

This technology has applications in gears, bearings, and gearboxes for automotive, spacecraft, and robotics. NASA’s Jet Propulsion Laboratory, Pasadena, California This invention describes systems and methods for implementing bulk metallic glass-based (BMG) macroscale gears with high wear resistance. This invention creates bulk metallic glasses (BMGs) with selected mechanical properties that are very similar to ceramics, such as high strength and resistance to wear, but without high melting temperatures. Ceramics are high-strength, hard materials that are typically used for their extremely high melting temperatures. Because of their extreme hardness, ceramics are optimal materials for making gears, due to their low wear loss. Unfortunately, ceramics suffer from low fracture toughness (typically <1 MPa·m1/2), and their high melting temperatures prevent them from being cast into net-shaped parts. Ceramic gears, for example, must be ground to a final shape at great expense.

Posted in: Briefs, Ceramics, Metals

Read More >>

Post-Flight Analysis Statistical Heating (PFlASH)

Lyndon B. Johnson Space Center, Houston, Texas This software tool automates the statistical analysis of heating indicators for a family of trajectories. It allows for quick and clear relative comparison of the trajectories by concisely and meaningfully reducing an arbitrarily large set of body point heating into single values that are used to rank the trajectories. This software is user friendly, and enables other engineers to easily perform analysis. PFlASH post-processes the XF0002 Dump7 files or QLIST to calculate heating indicators and statistics on the heating indicators. PFlASH automatically generates Matlab.m files to produce presentation-quality plots that are ready to be inserted into briefings or collated into a pdf.

Posted in: Briefs, Electronics & Computers, Mathematical/Scientific Software

Read More >>