Tech Briefs

Statistical Evaluation of Utilization of the ISS

PayLoad Utilization Modeler (PLUM) is a statistical-modeling computer program used to evaluate the effectiveness of utilization of the International Space Station (ISS) in terms of the number of research facilities that can be operated within a specified interval of time. PLUM is designed to balance the requirements of research facilities aboard the ISS against the resources available on the ISS. PLUM comprises three parts: an interface for the entry of data on constraints and on required and available resources, a database that stores these data as well as the program output, and a modeler. The modeler comprises two subparts: one that generates tens of thousands of random combinations of research facilities and another that calculates the usage of resources for each of those combinations. The results of these calculations are used to generate graphical and tabular reports to determine which facilities are most likely to be operable on the ISS, to identify which ISS resources are inadequate to satisfy the demands upon them, and to generate other data useful in allocation of and planning of resources.

Posted in: Software, Briefs

Read More >>

Shuttle Data Center File- Processing Tool in Java

A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.

Posted in: Software, Briefs

Read More >>

X-Windows PVT Widget Class

The X-Windows Process Validation Table (PVT) Widget Class (“Class” is used here in the object oriented programming sense of the word) was devised to simplify the task of implementing network registration services for Information Sharing Protocol (ISP) graphical user interface (GUI) computer programs. Heretofore, ISP PVT programming tasks have required many method calls to identify, query, and interpret the connections and messages exchanged between a client and a PVT server. Normally, programmers have utilized direct access to UNIX socket libraries to implement the PVT protocol queries, necessitating the use of many lines of source code to perform frequent tasks. Now, the X-Windows PVT Widget Class encapsulates ISP client server network registration management tasks within the framework of an X Windows widget. Use of the widget framework enables an X Windows GUI program to interact with PVT services in an abstract way and in the same manner as that of other graphical widgets, making it easier to program PVT clients. Wrapping the PVT services inside the widget framework enables a programmer to treat a PVT server interface as though it were a GUI. Moreover, an alternate subclass could implement another service in a widget of the same type.

Posted in: Software, Briefs

Read More >>

Using Dissimilarity Metrics to Identify Interesting Designs

A computer program helps to blend the power of automated-search software, which is able to generate large numbers of design solutions, with the insight of expert designers, who are able to identify preferred designs but do not have time to examine all the solutions. From among the many automated solutions to a given design problem, the program selects a smaller number of solutions that are worthy of scrutiny by the experts in the sense that they are sufficiently dissimilar from each other. The program makes the selection in an interactive process that involves a sequence of datamining steps interspersed with visual displays of results of these steps to the experts. At crucial points between steps, the experts provide directives to guide the process. The program uses heuristic search techniques to identify nearly optimal design solutions and uses dissimilarity metrics defined by the experts to characterize the degree to which solutions are interestingly different. The search, data-mining, and visualization features of the program were derived from previously developed risk-management software used to support a risk-centric design methodology.

Posted in: Software, Briefs, TSP

Read More >>

Coordinating an Autonomous Earth- Observing Sensorweb

A system of software has been developed to coordinate the operation of an autonomous Earth-observing sensorweb. Sensorwebs are collections of sensor units scattered over large regions to gather data on spatial and temporal patterns of physical, chemical, or biological phenomena in those regions. Each sensor unit is a node in a data-gathering/ data-communication network that spans a region of interest. In this case, the region is the entire Earth, and the sensorweb includes multiple terrestrial and spaceborne sensor units. In addition to acquiring data for scientific study, the sensorweb is required to give timely notice of volcanic eruptions, floods, and other hazardous natural events. In keeping with the inherently modular nature of the sensory, communication, and data-processing hardware, the software features a flexible, modular architecture that facilitates expansion of the network, customization of conditions that trigger alarms of hazardous natural events, and customization of responses to alarms. The software facilitates access to multiple sources of data on an event of scientific interest, enables coordinated use of multiple sensors in rapid reaction to detection of an event, and facilitates the tracking of spacecraft operations, including tracking of the acquisition, processing, and downlinking of requested data.

Posted in: Software, Briefs, TSP

Read More >>

Carbon-Nanotube Schottky Diodes

These devices can outperform conventional Schottky diodes at submillimeter wavelengths. Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter- wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter- wave sensors for more than 50 years.

Posted in: Semiconductors & ICs, Briefs, TSP

Read More >>

White-Light Whispering-Gallery-Mode Optical Resonators

Overlapping resonator modes are exploited to obtain wide, high-Q spectra. Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent offrequency. White-light WGM resonators have potential as superior alternatives to(1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-opticalmodulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers.

Posted in: Physical Sciences, Briefs, TSP

Read More >>