Tech Briefs

Lidar for Guidance of a Spacecraft or Exploratory Robot

A report describes the Laser Mapper (LAMP) — a lightweight, compact, low-power lidar system under development for guidance of a spacecraft or exploratory robotic vehicle (rover) at Mars or another planet. The LAMP is intended especially for use during rendezvous of two spacecraft in orbit, for mapping terrain during descent and landing of a spacecraft, for capturing a sample that has been launched into orbit, or navigation and avoidance of obstacles by a rover traversing terrain. The LAMP includes a laser that emits high-power, short light pulses. The laser beam is aimed in azimuth and elevation by use of a mirror on a two-axis gimbal, which scans the beam across a field of regard. Light reflected by a target is collected by a telescope, and the distance to the target is determined by measuring the round-trip travel time for reflected light pulses. The distance information is combined with directional information to construct a three-dimensional map of targets in the field of regard.

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

Electrochemical, H2O2-Boosted Catalytic Oxidation System

This system offers several advantages over O2-boosted systems.An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

Posted in: Briefs, Physical Sciences

Read More >>

Permanent Sequestration of Emitted Gases in the Form of Clathrate Hydrates

Hydrates would be formed under natural conditions. Underground sequestration has been proposed as a novel method of permanent disposal of harmful gases emitted into the atmosphere as a result of human activity. The method was conceived primarily for disposal of carbon dioxide (CO2, greenhouse gas causing global warming), but could also be applied to CO, H2S, NOx, and chorofluorocarbons (CFCs, which are super greenhouse gases). The method is based on the fact that clathrate hydrates (e.g., CO2×6H2O) form naturally from the substances in question (e.g., CO2) and liquid water in the pores of sub-permafrost rocks at stabilizing pressures and temperatures. The proposed method would be volumetrically efficient: In the case of CO2, each volume of hydrate can contain as much as 184 volumes of gas.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

Miniature Radioisotope Thermoelectric Power Cubes

These devices could supply power at extremely low temperatures for years. Cube-shaped thermoelectric devices energized by a particles from radioactive decay of 244Cm have been proposed as long-lived sources of power. These power cubes are intended especially for incorporation into electronic circuits that must operate in dark, extremely cold locations (e.g., polar locations or deep underwater on Earth, or in deep interplanetary space). Unlike conventional radioisotope thermoelectric generators used heretofore as central power sources in some spacecraft, the proposed power cubes would be small enough (volumes would range between 0.1 and 0.2 cm3) to play the roles of batteries that are parts of, and dedicated to, individual electronic-circuit packages. Unlike electrochemical batteries, these power cubes would perform well at low temperatures. They would also last much longer: given that the half-life of 244Cm is 18 years, a power cube could remain adequate as a power source for years, depending on the power demand in its particular application.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

Miniature Robotic Spacecraft for Inspecting Other Spacecraft

A report discusses the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) — a compact robotic spacecraft intended to be released from a larger spacecraft for exterior visual inspection of the larger spacecraft. The Mini AERCam is a successor to the AERCam Sprint — a prior miniature robotic inspection spacecraft that was demonstrated in a space-shuttle flight experiment in 1997. The prototype of the Mini AERCam is a demonstration unit having approximately the form and function of a flight system. The Mini AERCam is approximately spherical with a diameter of about 7.5 in. (»19 cm) and a weight of about 10 lb (»4.5 kg), yet it has significant additional capabilities, relative to the 14-in. (36-cm), 35-lb (16-kg) AERCam Sprint. The Mini AERCam includes miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including two digital video cameras and a high-resolution still camera. The Mini AERCam is designed for either remote piloting or supervised autonomous operations, including station keeping and point-to-point maneuvering. The prototype has been tested on an air-bearing table and in a hardware-in-the-loop orbital simulation of the dynamics of maneuvering in proximity to the International Space Station.

Posted in: Briefs, TSP, Mechanical Components

Read More >>

Miniature Ring-Shaped Perisaltic Pump

Piezoelectrically excited fluid-transport volumes travel around a ring. An experimental miniature peristaltic pump exploits piezoelectrically excited flexural waves that travel around a ring: A fluid is carried in the containers formed in the valleys between the peaks of the flexural waves (see Figure 1). The basic action of this pump is similar to that described in "Piezoelectric Flexural- Traveling- Wave Pumps" (NPO-19737), NASA Tech Briefs, Vol. 21, No. 4 (April 1997), page 66.

Posted in: Briefs, TSP, Mechanical Components

Read More >>

Reproducible Growth of High-Quality Cubic-SiC Layers

Cubic SiC could be used to improve high-power and harsh-environment electronic devices. Semiconductor electronic devices and circuits based on silicon carbide (SiC) are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which devices made from conventional semiconductors cannot adequately perform. The ability of SiC-based devices to function under such extreme conditions is expected to enable significant improvements in a variety of applications and systems. These include greatly improved high-voltage switching for saving energy in public electric power distribution and electric motor drives; more powerful microwave electronic circuits for radar and communications; and sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

Posted in: Briefs, TSP, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.