Tech Briefs

Miniature Gas-Turbine Power Generator

Energy density would greatly exceed that of a typical battery system. A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric- power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell.

Posted in: Briefs, TSP

Read More >>

Pneumatically Actuated Miniature Peristaltic Vacuum Pumps

Small, rugged, low-power pumps could be fabricated inexpensively. Pneumatically actuated miniature peristaltic vacuum pumps have been proposed for incorporation into advanced miniature versions of scientific instruments that depend on vacuum for proper operation. These pumps are expected to be capable of reaching vacuum-side pressures in the torr to millitorr range (from ≈133 down to ≈0.13 Pa). Vacuum pumps that operate in this range are often denoted roughing pumps. In comparison with previously available roughing pumps, these pumps are expected to be an order of magnitude less massive and less power-hungry. In addition, they would be extremely robust, and would operate with little or no maintenance and without need for oil or other lubricants. Portable mass spectrometers are typical examples of instruments that could incorporate the proposed pumps. In addition, the proposed pumps could be used as roughing pumps in general laboratory applications in which low pumping rates could be tolerated.

Posted in: Briefs, TSP

Read More >>

A Reactive-Ion Etch for Patterning Piezoelectric Thin Film

Gaseous mixtures BCl3 and Cl2 are highly selective for etching PbZr1-xTixO3 films. Reactive-ion etching (RIE) under conditions described below has been found to be a suitable means for patterning piezoelectric thin films made from such materials as PbZr1-xTixO3 or BaxSr1-xTiO3. In the original application for which this particular RIE process was developed, PbZr1-xTixO3 films 0.5 μm thick are to be sandwiched between Pt electrode layers 0.1 µm thick and Ir electrode layers 0.1 μm thick to form piezoelectric capacitor structures. Such structures are typical of piezoelectric actuators in advanced microelectromechanical systems now under development or planned to be developed in the near future.

Posted in: Briefs, TSP

Read More >>

Wafer-Level Membrane-Transfer Process for Fabricating MEMS

This process is well suited for structures fabricated on dissimilar substrates. A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectro- mechanical systems (MEMS) that have been fabricated on dissimilar substrates.

Posted in: Briefs, TSP

Read More >>

Pressure-Sensor Assembly Technique

An essential underfilling step can be performed without compromising a diaphragm. Nielsen Engineering & Research (NEAR) recently developed an ultrathin data acquisition system for use in turbomachinery testing at NASA Glenn Research Center. This system integrates a microelectro- mechanical-systems- (MEMS-) based absolute pressure sensor [0 to 50 psia (0 to 345 kPa)], temperature sensor, signal-conditioning application-specific integrated circuit (ASIC), microprocessor, and digital memory into a package which is roughly 2.8 in. (7.1 cm) long by 0.75 in. (1.9 cm) wide. Each of these components is flip-chip attached to a thin, flexible circuit board and subsequently ground and polished to achieve a total system thickness of 0.006 in. (0.15 mm). Because this instrument is so thin, it can be quickly adhered to any surface of interest where data can be collected without disrupting the flow being investigated.

Posted in: Briefs

Read More >>

Quantum Search in Hilbert Space

A large database would be searched in one quantum computing operation. A proposed quantum-computing algorithm would perform a search for an item of information in a database stored in a Hilbert-space memory structure. The algorithm is intended to make it possible to search relatively quickly through a large database under conditions in which available computing resources would otherwise be considered inadequate to perform such a task.

Posted in: Briefs, TSP

Read More >>

Wavelet-Based Real-Time Diagnosis of Complex Systems

Changes in hardware and software can be simultaneously examined for signs of loss of control. A new method of robust, autonomous real-time diagnosis of a time-varying complex system (e.g., a spacecraft, an advanced aircraft, or a process-control system) is presented here. It is based upon the characterization and comparison of (1) the execution of software, as reported by discrete data, and (2) data from sensors that monitor the physical state of the system, such as performance sensors or similar quantitative time-varying measurements. By taking account of the relationship between execution of, and the responses to, software commands, this method satisfies a key requirement for robust autonomous diagnosis, namely, ensuring that control is maintained and followed.

Posted in: Briefs, TSP

Read More >>