Tech Briefs

Portable Superconductivity Systems for Small Motors

Substituting for a conventional permanent magnet, this system can produce a 3-tesla magnetic field.

Superconductivity, where electrical currents travel unhindered through a material, has many practical uses. It is used in applications extending from MRIs in hospitals to the cavities of particle accelerators. However, practical exploitation of superconductivity also presents many challenges.

Posted in: Briefs, Automation, Downsizing, Off-board vehicle charging systems, Nuclear energy, Conductivity, Magnetic materials, Electric motors

BiBlade Sampling Chain

This tool enables multiple sampling attempts per sample.

The BiBlade sampler has been developed for potentially acquiring samples from the surface of a planetary body. The tool could conceivably be used in both in situ and notional sample return missions to planetary bodies including asteroids, comets, and moons. While the tool was designed for planetary sampling missions, it could have terrestrial applications as well.

Posted in: Briefs, Automation, Soils, Tools and equipment, Robotics, Test equipment and instrumentation, Spacecraft

Six-Legged Robots Move Faster with Bipod Gate

The two-legged gait is more efficient for ground robots that don't climb walls or ceilings.

Six-legged insects run fastest using a three-legged (tripod) gait where they have three legs on the ground at all times (two on one side of their body and one on the other). The tripod gait has long inspired engineers who design six-legged robots, but researchers at Ecole Polytechnique Fédérale de Lausanne (EPFL) and the University of Lausanne (UNIL) revealed that there is a faster way for robots to move on flat ground, provided they don't have the adhesive pads used by insects to climb walls and ceilings. Their work suggest designers of insect-inspired robots should give up the tripod-gait paradigm and consider other possibilities, including a new locomotor strategy denoted as the “bipod” gait.

Posted in: Briefs, Automation, Computer simulation, Mathematical models, Kinematics, Robotics, Biomechanics

Reducing Inaccuracies in Force/Haptic Feedback Systems

This novel algorithm automatically compensates for the errors introduced by physical factors, enabling the control system to Adjust the applied force accurately.

Researchers at NASA's Armstrong Flight Research Center have developed a new technology to reduce inaccuracies in force/haptic feedback devices and systems. Used at NASA in aircraft simulations for force feedback pilot controls, these systems involve a servo motor applying precise force to a specific point based on very accurate measurements. However, because the force instrumentation often cannot be placed directly at the point of interest, a mechanical assembly is used, linking the force transducer to the target point. Unfortunately, this mechanical assembly introduces inaccuracies due to its own forces of gravity, friction, and inertia.

Posted in: Briefs, Automation, Computer simulation, Mathematical models, Human machine interface (HMI), Aircraft operations, Reliability

ISO 26262 & Automotive Electronics Development

Compliance standards, especially those that involve relatively new functional safety elements, will likely add additional requirements to the development process. But ISO 26262, in particular, will add more than new requirements to the product life cycle for automotive hardware-software systems. This Functional Safety standard will act as a framework impacting integrated requirements traceability, risk management, validation, verification, documentation and collaboration throughout the systems engineering “V” model life cycle process (see Figure). ISO 26262 will also require the qualification of tools used to create automotive systems. This paper examines the impact of the standard on the development process and support tool chains for automotive electronics.

Posted in: Briefs, TSP, Electronics & Computers, Information Sciences, Semiconductors & ICs, Software, Computer software and hardware, Life cycle analysis, Safety regulations and standards

PTC Heater Brings Greater Control for Hand-held Medical Devices and Disposables

Point of Care diagnostics devices, whether handheld or single-use, often require a brief application of tightly controlled heat. The disposable nature of these devices requires a low-cost component capable of delivering that heat reliably and safely. Heatron's new PTC heater solution uses a polymer-based heater technology that controls heat to within ±2°C of the target temperature, and reduces unit cost by eliminating sensors and applied controls.

Posted in: White Papers, Briefs, TSP, Electronics & Computers, Thermoelectrics, Medical, Medical equipment and supplies, Heating, ventilation, and air conditioning systems (HVAC), Polymers

2.2-Micron, Uncooled, InGaAs Photodiodes and Balanced Photoreceivers up to 25-GHz Bandwidth

These photodiodes have applications in LiDAR sensors, telecommunications links, and pulsed laser systems.

Traditional applications for 2-micron photodetectors have been largely dominated by passive remote sensing where detectors having bandwidth of even one megahertz are deemed sufficient. The onus in such applications is to achieve low dark current through active cooling. The advent of high-power, 2-micron-wave-length lasers have made coherent LiDARs viable for active sensing applications. Such a system needs photodetectors that can handle high local oscillator optical power and have large bandwidth. Through a combination of high coherent gain and small integration time, a large signal-to-noise ratio can be achieved. Operation at high optical power levels reduces the significance of photodiodes’ dark current. As a result, uncooled operation at room temperature is feasible, simplifying the overall instrument design.

Posted in: Briefs, Photonics, Optics, Remote sensing, Cooling

Fourier Transform Spectrometer System

NASA's Langley Research Center and Science Applications International Corporation have developed a method of processing data from Fourier transform spectroscopy (FTS) measurements that improves upon existing methods. This method is simpler, more accurate, faster, and less expensive than previous methods. It uses less hardware and can be used with all wavelengths.

Posted in: Briefs, Photonics, Architecture, Spectroscopy, Data management

Large-Area, Polarization-Sensitive Bolometer for Multi-Mode Optics

This type of detector will be used by the PIXIE mission to map the microwave sky in polarization, opening a new window to the earliest moments of the universe.

Polarization-sensitive bolometer measures linear polarization of the cosmic microwave background. (Left) Prototype detector. The absorber in the central square fills a small fraction of the optical area, but is opaque to microwaves. (Center) Schematic diagram showing the absorbing wires and sensing thermistors. (Right) Photomicrograph showing absorbing wires and the crystalline silicon end bank.

Measurements of the cosmic microwave background are a powerful probe of the early universe. Part-per-million fluctuations in the intensity of background trace the initial conditions of matter and energy shortly after the Big Bang, mapping the large-scale structure of spacetime. Now, new measurements in linear polarization at sensitivities of a few parts per billion can look behind these initial conditions to test physics at energies a trillion times higher than terrestrial accelerators, and perhaps even provide a glimpse of quantum gravity in action.

Posted in: Briefs, Photonics, Measurements, Optics, Radiation

Wireless Tamper Detection Sensor and Sensing System

The sensors can detect and locate cracks, material strain, or impact damage.

NASA's Langley Research Center researchers have developed a wireless, connection-free inductor capacitor sensor system that can be placed on or embedded in materials and structures to monitor for and detect damage. The sensors can also be used to detect package tampering and pilfering. This innovation — SansEC (Sans Electrical Connections) — makes sensors more damage resilient and more environmentally friendly to manufacture and use.

Posted in: Briefs, Sensors, Capacitors, Sensors and actuators, Wireless communication systems, Diagnostics, Packaging

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.