Tech Briefs

Determining Detection and Classification Potential of Munitions Using Advanced EMI Sensors in the Underwater Environment

Electromagnetic induction could be used to locate and characterize potentially dangerous sunken metallic objects.

Hazardous ordnance items are present along coastlines and in rivers and lakes in waters shallow enough to cause concerns for human recreational and industrial activities. The presence of water makes it difficult to detect and remove these hazardous legacies induced from wars, military training and deliberate disposal. Various techniques have been proposed to detect and characterize Unexploded Ordnances (UXO) and discarded military munitions (DMM) in the underwater environment including acoustic waves, magnetometery, and electromagnetic induction (EMI).

Posted in: Briefs, TSP, TSP, Aerospace, Sensors, Sensors and actuators, Sensors and actuators, Water, Defense industry, Conductivity, Hazardous materials, Marine vehicles and equipment, Missiles

High Energy Computed Tomographic Inspection of Munitions

Inspection system provides additional level of quality assurance for R&D, reverse engineering, and malfunction investigations.

An advance computed tomography (CT) system was recently built for the U.S. Army Armament Research, Development and Engineering Center, Picatinny Arsenal, NJ, for the inspection of munitions. The system is a charged coupled device (CCD) camera based CT system designated with the name “experimental Imaging Media” (XIM). The design incorporated shielding for use up to 4MeV x-ray photons and integrated two separate cameras into one single field of view (FOV). Other major distinguishing characteristics include its processing functions to digitally piece the two cameras together, use of advanced artifact reduction principles, performing reconstruction simultaneously during acquisition, and its development in accurate beam hardening corrections through digital means.

Posted in: Briefs, TSP, TSP, Aerospace, Photonics, Charge coupled devices, Imaging, Imaging and visualization, Charge coupled devices, Imaging, Imaging and visualization, Defense industry, Inspections, Missiles

Terahertz (THz) Radar: A Solution For Degraded Visibility Environments (DVE)

Operating at higher frequencies than other types of radar produces tighter beams and finer resolution.

An accurate view of the physical world is frequently vital. For example, rotary wing aircraft pilots must have knowledge of the terrain in order to safely fly their aircraft. Therefore, systems capable of generating images of the environment of sufficient quality to facilitate the decision process are necessary. The product of such a system is illustrated in Figure 1.

Posted in: Briefs, TSP, TSP, Aerospace, Imaging, Cartography, Imaging, Imaging and visualization, Radar, Cartography, Imaging, Imaging and visualization, Radar, Terrain

Development of Photoacoustic Sensing Platforms

Research focuses on sensor miniaturization and detection of chemical targets both proximally and at range.

In recent years, photoacoustic spectroscopy (PAS) has emerged as an attractive and powerful technique well suited for sensing applications. The development of high-power radiation sources and more sophisticated electronics, including sensitive microphones and digital lock-in amplifiers, have allowed for significant advances in PAS. Furthermore, photoacoustic (PA) detection of IR absorption spectra using modern tunable lasers offers several advantages, including simultaneous detection and discrimination of numerous molecules of interest. Successful applications of PAS in gases and condensed matter have made this a notable technique and it is now studied and employed by scientists and engineers in a variety of disciplines.

Posted in: Briefs, TSP, TSP, Aerospace, Photonics, Amplifiers, Electronic equipment, Lasers, Sensors and actuators, Spectroscopy, Amplifiers, Electronic equipment, Lasers, Sensors and actuators, Spectroscopy, Acoustics, Acoustics

A Modular Apparatus and Method for Attaching Multiple Devices

This technology improves the real-time monitoring of high-temperature or other harsh environments.

Posted in: Briefs, Electronics & Computers, Electronic equipment, Sensors and actuators, Fabrication, Silicon alloys, Protective structures

Active Remote Sensing Radiometer

This technology can be used for security screening and security imaging, as well as automotive navigation in dust and fog conditions where machine vision performs poorly.

Posted in: Briefs, Sensors, Imaging and visualization, Radar, Remote sensing, Thermodynamics

Exo-Brake Enables Safe Return for Small Spacecraft

The tension-based, flexible braking device resembles a cross parachute.

Posted in: Briefs, Automation, Product development, Drag, Entry, descent, and landing, Satellites, Spacecraft

Green Monopropellant Secondary Payload Propulsion System

Small satellites, launched as secondary payloads, are increasingly being fielded. Advances in liquid rocket propulsion that enhance the on-orbit maneuverability, increase the on-orbit life, and decrease the time between identified need for and deployment of such spacecraft are of great value. Replacing the nearly ubiquitous yet toxic hydrazine propellant with AF-M315E produces higher specific impulse and density specific impulse, resulting in improved overall velocity change capability and increased on-orbit life.

Posted in: Briefs, Propulsion, Liquid propellants, Spacecraft fuel, Foams, Ignition systems, Satellites, Spacecraft

Highly Porous and Mechanically Strong Ceramic Oxide Aerogels

These materials provide improved environmental durability and elasticity for aerospace and terrestrial applications.

NASA's Glenn Research Center (GRC) has developed and produced ultra-lightweight polymer cross-linked aerogels (X-Aerogels). These mechanically robust, highly porous, low-density materials are three times denser than native aerogels, but more than 100 times stronger. Aerogels are ultra-lightweight glass foams with extremely small pores (on the order of 10 to 50 nanometers). These materials are extremely good thermal insulators, with R values ranging from 2 to 10 times higher than polymer foams. Unlike multilayer insulation, aerogels do not require a high vacuum to maintain their low thermal conductivity, and can function as good thermal insulators at ambient pressure. In addition, they are good electrical insulators and have low refractive indices, both approaching values close to air. Aerogels are also excellent vibration-damping materials. Traditional aerogels, however, suffer fragility and poor environmental durability.

Posted in: Briefs, Materials, Ceramics, Conductivity, Foams, Lightweight materials, Materials properties, Polymers

AutoSurvey™ Software System

The U.S. Navy has developed a software system that optimizes the collection of data for hydrographic surveys. The autonomous survey system, called AutoSurvery, is an easy-to-implement, real-time adaptive software system for the collection of swath-type data that minimizes survey time while maintaining data quality and ensuring the desired coverage.

Posted in: Briefs, Sensors, Computer software and hardware, Data acquisition and handling, Sensors and actuators, Defense industry, Marine vehicles and equipment

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.