Tech Briefs

Low-Density Titanium-Based Bulk Metallic Glasses with High Glass-Forming Ability

These materials can be used in gears, bearings, latches, inserts, and sheet metal. NASA’s Jet Propulsion Laboratory, Pasadena, California Ti-based bulk metallic glasses (BMGs) and matrix composites (BMGMCs) are a subset of the class of materials known synonymously as amorphous metals, liquid metals, and glassy metals, described by their majority element (in atomic percent) being that of titanium. BMGs are non-crystalline metal alloys based in a wide variety of elemental systems, including zirconium, iron, nickel, hafnium, gold, platinum, palladium, and silver, among others. The vast majority of commercially utilized BMGs are based in Zr-Ti-Cu-Ni-Be or Zr-Cu-Ni-Al due to their relatively low-cost elements and large glass-forming ability (GFA), typically greater than 1 cm. BMGs have long been considered to be a material without a clear application, as the density of BMGs fits squarely between two common, highperformance crystalline alloys that BMGs are usually thought to be replacements for: steel (density = 7.8 g/cm3) and titanium (density = 4.5 g/cm3). For example, Zr-based BMGs generally fit into the range of 6 to 6.5 g/cm3, which makes them difficult to use as direct replacements for conventional materials.

Posted in: Briefs

Read More >>

Thermal Management Coating (TMC)

The coating uses micro-encapsulated phase-change material. Marshall Space Flight Center, Alabama An experimental study was conducted in conjunction with the research and development program at the NASA Marshall Space Flight Center (MSFC) on thermal protection systems (TPS) for aerospace applications, a new concept for reusable TPS material. The new system uses a micro-encapsulated phase-change material rather than an ablative material to dissipate the heat produced during supersonic flight. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is released as the material cools. This new TPS consists of micro-encapsulated phasechange material and a resin system to adhere the coating to the structure. The technology has been successfully tested in the hot gas tunnel (aero-thermal heating). The figure shows the test results.

Posted in: Briefs

Read More >>

AeroHeating Tools (AHT) Suite

Lyndon B. Johnson Space Center, Houston, Texas This suite of computer programs, called “tools,” is used to calculate local flow angles over damage sites in the Shuttle Orbiter Thermal Protection System (TPS). It provides a quick and easy way to compute cross flow angles over points of interest on the Shuttle Orbiter TPS.

Posted in: Briefs

Read More >>

NEO Hunter Seeker Micro-Spacecraft and Mission Concept

Spacecraft mass and mission cost can be drastically reduced, including the ability to not only discover, but visit near Earth objects. NASA’s Jet Propulsion Laboratory, Pasadena, California The area of research known as “Planetary Defense” is largely concerned with identifying and tracking asteroids that could impact Earth. The vast majority of asteroids that pose such a risk are known as “Near Earth Asteroids/Objects” or NEAs and NEOs. Some of them are unknown, un-cataloged, and untracked, but are presumed to orbit in Earth-like orbits, and periodically cross Earth’s orbit in a possibly threatening manner.

Posted in: Briefs, TSP

Read More >>

Multipath, Multistage, Erosion-Resistive Valve for Downhole Flow Control

This valve can sustain the extremely high pressure of deep oil wells. NASA’s Jet Propulsion Laboratory, Pasadena, California Multipath, multistage, erosion-resistant flow control valves have been developed that can sustain the extremely high pressure of deep oil wells. Fitting in the restricted available space and operating using limited power with a long lifetime are challenges for choke valves in the downhole environment of oil wells. These valves must control the flow rate from high-pressure oil reservoirs in the presence of fluids that have non-zero sand concentrations. This design consists of a digitized flow control valve with multipath and multistage pressure reduction structures. Specifically, the valve is configured as a set of parallel flow paths from the inlet to the outlet.

Posted in: Briefs, TSP

Read More >>

Passive Close-Off Feature for Sample Acquisition and Retention

This design has applications in the oil and gas field, and in coring to collect samples from human internal organs for medical applications. NASA’s Jet Propulsion Laboratory, Pasadena, California The current coring bit and percussive drilling style works very well for strong rocks; however, when coring into weak, crumbling rock, the core tends to break apart and simply fall out of the bit. These rocks, powder, and other debris can have useful information that is lost when they fall out of the bit after the core has been made, as there is no retention feature in place. A retention mechanism for coring into weak rocks was developed.

Posted in: Briefs, TSP

Read More >>

Piezoelectric-Actuated Cryogenic Thermodynamic Vent Valve

Piezoceramic transducer elements with ceramic dielectric coating were successfully used in the actuator system. Lyndon B. Johnson Space Center, Houston, Texas Cryogenic fluid control valves require actuation that controls the geometric position of the orifice in a thermally stable manner. Traditional actuator devices may have various materials used in their construction that have varying CTEs (coefficients of thermal expansion) and therefore may shift (expand or contract) relative to the reference mounting points on the valve body. This leads to a lack of valve orifice control and leakage in the valve. To provide a more thermally stable control valve for cryogenic fluids, Dynamic Structures and Materials LLC (DSM LLC) provided a piezoelectric ceramic-driven actuation system on a cryogenic thermodynamic vent system (TVS) valve.

Posted in: Briefs, TSP

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.