Special Coverage

Home

'Gate Sensor' Detects Individual Electrons

A team of European researchers at the University of Cambridge has created an electronic device that detects the charge of a single electron in less than one microsecond. The "gate sensor" could be applied to quantum computers of the future to read information stored in the charge or spin of a single electron.“We have called it a gate sensor because, as well as detecting the movement of individual electrons, the device is able to control its flow as if it were an electronic gate which opens and closes,” said González Zalba, lead researcher from the Hitachi Cambridge Laboratory and the Cavendish Laboratory.The gate sensor is coupled to a silicon nanotransistor where the electrons flow individually. The innovation represents a new technological sector which bases its electronic functionality on the charge of a single electron.SourceAlso: Read more Electrical/Electronics tech briefs.

Posted in: News

Read More >>

New Wearable Device Turns Thumbnail into Trackpad

MIT Media Laboratory researchers are developing a wearable device that turns the user’s thumbnail into a miniature wireless track pad. To build their prototype, the researchers packed capacitive sensors, a battery, and three separate chips — a microcontroller, a Bluetooth radio chip, and a capacitive-sensing chip — into the thumbnail-sized device. The engineers built their sensors by printing copper electrodes on sheets of flexible polyester, which allowed them to experiment with a range of different electrode layouts.The capacitive sensing registers touch. A thin, nonactive layer is placed between the user’s finger and the underlying sensors.The team envisions that the technology could allow users to control wireless devices when their hands are full. The device could also augment other interfaces, as well as enable subtle communication via text. The researchers have also been in discussion with battery manufacturers and have identified a technology that they think could yield a battery that fits in the space of a thumbnail. A special-purpose chip that combines the functions of the microcontroller, radio, and capacitive sensor would further save space.SourceAlso: Read more Sensors tech briefs.

Posted in: News

Read More >>

Engineers Develop 2D Liquid

Soft nanoparticles from a University of Pennsylvania research team stick to the plane where oil and water meet, but do not stick to one another. The interface presents a potentially useful set of properties. The nanoparticles freely move past one another while being confined to the interface, effectively acting as a 2D liquid. Gold nanoparticles were decorated with surfactant, or soap-like, ligands. The ligands have a water-loving head and an oil-loving tail, and the way they are attached to the central particle allows them to contort themselves.The arrangement produces a “flying saucer” shape, with the ligands stretching out more at the interface than above or below. The ligand bumpers keep the particles from clumping together.  The researchers also devised ways of measuring the system's properties. Their data will better inform computer simulations and potentially lead to applications in fields like nanomanufacturing and catalysis. SourceAlso: Learn about a Nanoparticle/Polymer Nanocomposite Bond Coating.

Posted in: News

Read More >>

Prototype Camera Powers Itself

A new prototype video camera is fully self-powered and can produce an image each second, indefinitely, of a well-lit indoor scene. Columbia University researchers designed a pixel that can not only measure incident light but also convert the incident light into electric power.The simple pixel design uses two transistors. During each image capture cycle, the pixels first record and read out the image, and then harvest energy and charge the sensor’s power supply; the image sensor continuously toggles between image capture and power harvesting modes. When the camera is not used to capture images, it can generate power for other devices, such as a phone or a watch.SourceAlso: Learn about Detection of Dropped Objects in Video.

Posted in: News

Read More >>

Special Delivery: NASA Marshall Receives 3D-Printed Tools from Space

Engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, unboxed some special cargo from the International Space Station on April 6: the first items manufactured in space with a 3D printer.The items were manufactured as part of the 3D Printing in Zero-G Technology Demonstration on the space station to show that additive manufacturing can make a variety of parts and tools in space. The early in-space 3D printing demonstrations are the first steps toward realizing an additive manufacturing, print-on-demand “machine shop” for long-duration missions and sustaining human exploration of other planets, where there is extremely limited ability and availability of Earth-based resupply and logistics support. In-space manufacturing technologies like 3D printing will help NASA explore Mars, asteroids, and other locations.NASA astronaut Barry “Butch” Wilmore installed the printer in the station’s Microgravity Science Glovebox in November 2014. Before the end of the year, the crew manufactured 21 items including a ratchet wrench, the first tool built in space. To make the items, the printer heated a relatively low-temperature plastic filament to build parts, layer on top of layer, in designs supplied to the machine. The printer remains on aboard the station for continued use later this year. The printer used 14 different designs and built a total of 21 items and some calibration coupons. The parts returned to Earth in February on the SpaceX Dragon. They were then delivered to Marshall where the testing to compare the ground controls to the flight parts will be conducted. SourceAlso: Learn about the Design and Fabrication of a Radio Frequency Grin Lens Using 3D Printing.

Posted in: News

Read More >>

Inkjet Technology Prints 'Soft Robot' Circuits

A new potential manufacturing approach from Purdue University researchers harnesses inkjet printing to create devices made of liquid alloys. The resulting stretchable electronics are compatible with soft machines, such as robots that must squeeze through small spaces, or wearable electronics. The conductors made from liquid metal can stretch and deform without breaking. The Purdue team's process allows users to print the flexible conductors onto elastic materials and fabrics.To make the printable ink, ultrasound technology disperses the liquid metal in a non-metallic solvent. The process breaks up the bulk liquid metal into nanoparticles, which are compatible with inkjet printing. After printing, the nanoparticles must be rejoined by applying light pressure, which renders the material conductive. Future research will explore how the interaction between the ink and the surface being printed on might be conducive to the production of specific types of devices. The researchers also will study and model how individual particles rupture when pressure is applied, providing information that could allow the manufacture of ultra-thin traces and new types of sensors.Source Also: Learn about Inkjet-Assisted Creation of Self-Healing Layers.

Posted in: News

Read More >>

Smart Sensor System Continuously Monitors Machinery

A new method of continuously monitoring the status of machinery is a mobile tablet-based system that supplies information on the operational state of industrial machinery and plant equipment, and informs operators if a part needs to be replaced or if a repair can be postponed. The system uses sensors that continuously acquire data on parameters such as vibrational frequency or temperature.

Posted in: News

Read More >>