Special Coverage

Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research

Tool Helps Design Soft Robots That Can Bend and Twist

Designing a soft robot to move organically — to bend like a finger or twist like a wrist — has always been a process of trial and error. Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering have developed a method to automatically design soft actuators based on the desired movement.

Posted in: News, Implants & Prosthetics, Motion Control, Robotics, Computer-Aided Design (CAD), Software
Read More >>

Researchers Awaken Graphene's Hidden Superconductivity

Since its discovery in 2004, scientists have believed that graphene contained an innate ability to superconduct. Now researchers from the University of Cambridge have found a way to activate that previously dormant potential, enabling the material to carry an electrical current with zero resistance.

Posted in: News, Materials
Read More >>

Researchers Spin Artificial Spider Silk

Researchers from the Swedish University of Agricultural Sciences and Karolinska Institutet has, step by step, developed a way of "spinning" artificial spider silk.

Posted in: News, Manufacturing & Prototyping
Read More >>

Researchers Design Lightweight, 'Stronger-Than-Steel' Material

A team of engineers at the Massachusetts Institute of Technology has successfully designed a new 3D material with five percent the density of steel and ten times the strength. By compressing and fusing flakes of graphene, a two-dimensional form of carbon, the sponge-link configuration is one of the strongest and lightest known materials.

Posted in: News
Read More >>

New Fabrication Technique Creates More Efficient Plastic Solar Cells

Schematic of a sequentially cast ternary (SeCaT) solar cell. (Peter and Ryan Allen)

Researchers from North Carolina State University have developed a new strategy for fabricating more efficient plastic solar cells. The work has implications for developing solar cells with a wider absorption range and increased efficiency.

Posted in: News, Solar Power, Manufacturing & Prototyping, Manufacturing processes
Read More >>

Technique Could Lower Costs of Making Bioplastics and Biofuel

Ulrica Edlund, professor of polymer technology.

While abundant in nature, cellulose is difficult and expensive to find in pure or high-quality form. A Swedish research team has developed an efficient, accurate, and non-destructive way to detect the occurrence and purity of cellulose. The technique can be applied in mixtures of biopolymers as well.

Posted in: News, Manufacturing & Prototyping, Biofuels, Biomaterials, Plastics
Read More >>

Prototype Capture System Simulates Asteroid Mission

A prototype of the robotic capture module system is tested with a mock asteroid boulder in its clutches at NASA’s Goddard Space Flight Center.

A robotic capture module system prototype was built to help NASA engineers understand the operations required to collect a multi-ton boulder from an asteroid’s surface. The hardware includes three space frame legs with foot pads, and two seven-degrees-of-freedom arms with microspine gripper “hands” to grasp onto the boulder.

Posted in: News, Motion Control, Robotics
Read More >>

Dike Inspection Robot is Energy-Autonomous

The robot's drive train, including the dual-hemisphere system. (Image: University of Twente)

Inspecting the condition of dikes and other sea defense structures is typically a task for robots, working in a team and in a highly autonomous way. But if they move around across the dikes, perform tests, and communicate the results for six hours a day, they use a lot of energy.

Posted in: News, Motion Control, Motors & Drives, Power Transmission
Read More >>

System Harvests Energy from Automotive Shock Absorbers

The energy harvesting device focuses on the car’s suspension – specifically, the shock absorbers.

Boosting the fuel efficiency of motor vehicles by “harvesting” the energy generated by their shock absorbers and feeding it back into batteries or electrical systems such as air conditioning has become a major goal in automotive engineering. A University of Huddersfield (UK) researcher has designed a new system and built a prototype that is ready for real-world testing.

Posted in: News, Energy Harvesting, Motion Control
Read More >>

Silicon Nanoantennas Turn Light Around

An artist’s rendering of nonlinear light scattering by a dimer of two silicon particles with a variable radiation pattern.

A team of physicists from ITMO University, MIPT, and The University of Texas at Austin have developed an unconventional nanoantenna that scatters light in a particular direction depending on the intensity of incident radiation. The research findings will help with the development of flexible optical information processing in telecommunication systems.

Posted in: News, Lasers & Laser Systems, Optics, Photonics
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.