Special Coverage

Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection

Micro-Lid for Sealing a Sample Reservoir for Micro-Extraction Systems

Improved micro-extraction systems could be useful for military remote sensing using microfluidics.Great strides are taken to miniaturize spaceflight instrumentation, particularly analytical systems such as liquid chromatographs, gas chromatographs, and mass spectrometers. With miniaturization of instruments, large amounts of samples are no longer required. Therefore, a lesser quantity of sample from the environment needs to be acquired and extracted. Current practices of sample extraction are large in volume and consume an enormous amount of power, which is inconsistent for microfluidic instruments in development. These consume minute amounts of power and are of low mass. There have been efforts to create micro-sample extraction systems; however, a downfall of those systems is the inability to automatically close sample reservoirs.

Posted in: Briefs, Mechanical Components, Mechanics, Containers, Seals and gaskets, Test equipment and instrumentation, Spacecraft


Single-Fluid-Pumped Radiators with Increased Turn-Down Ratio and Control in the Stagnation Regime

The system trades mass-optimized heat rejection for a human-rated, single-fluid pumped system of greater heat rejection range and passive control.Fluid-pumped radiators are used to reject heat from structures to space. A fluid travels inside the structure to collect heat, and then travels external to the structure through radiators where the heat is rejected to space via radiation heat transfer. A radiator is essentially several tubes attached to a thermally conducting plate or face sheet. The fluid cools as it travels along the inside of the tubes, and then returns to the inside of the structure to repeat the heat rejection cycle. If the structure contains humans, the fluid in the structure must be nontoxic and nonflammable. Further, as space can be extremely cold (4 K), the fluid external to the structure may freeze, particularly during low-power operations where heat rejection needs are minimal. Freezing of the fluid renders the radiator inoperable, and unfreezing a radiator can be very difficult, power-intensive (i.e. heaters), and/or timely. For these reasons, two fluids may be used: one inside that is compatible with humans (e.g. water), and one outside that has a low freezing point (e.g. ammonia). The heat is then transferred from the inner loop to the external loop through a heat exchanger. This dual-loop system is more complex and heavier than a single-loop system. However, as the outer loop does not freeze as easily, the dual-loop radiator system can be operated at lower heat rejection loads, increasing its overall heat rejection range (or turn-down ratio) over that of the single-loop system.

Posted in: Briefs, Mechanical Components, Mechanics, Heat exchangers, Heat transfer, Radiators


Silicon Micro-Emitters for Microfluidic Electrospray Propulsion Systems

Advances in microfabrication capabilities are enabling the development of micro-needles for highly compact electrospray systems.JPL's Microfluidic Electrospray Propulsion (MEP) thruster design is based on a microfabricated electrospray system with a capillary-force-driven feed system that uses indium metal as the propellant. This architecture provides an extremely compact, modular system scalable to a wide range of applications from micro spacecraft to large, space-based telescopes.

Posted in: Briefs, Manufacturing & Prototyping, Architecture, Microelectromechanical devices, Propellants, Spacecraft fuel, Silicon alloys


Hybrid Flow Control Method for Simple Hinged Flap High-Lift System

This approach combines sweeping jet actuators for active flow control and adaptive vortex generators for passive flow control.NASA's Langley Research Center has created a novel process that significantly improves the effectiveness of high-lift devices on aircraft wings by utilizing a hybrid concept of both sweeping jet (SWJ) actuators for active flow control (AFC) and adaptive vortex generators (AVGs) for passive flow control. High-lift technology reshapes aircraft wings for more lift during takeoff and landing. Conventional high-lift devices are complex and employ a significant number of parts. In addition, these complex mechanical high-lift systems (e.g., Fowler flap mechanisms) often protrude externally under the wings, resulting in increased cruise drag. Simple hinged flaps are preferable high-lift devices for low-drag cruise performance, but they are vulnerable to flow separation at high flap deflections for both trailing edge and leading edge applications. This innovation achieves higher flap deflections without flow separation while minimizing the pneumatic power requirement of AFC.

Posted in: Briefs, Aeronautics, Aerospace, Wings, Electronic control systems, Sensors and actuators, Performance upgrades


Rescue Robot Has Remote Control Function

A group of Japanese researchers developed a prototype construction robot for disaster relief situations.A group of researchers at Osaka University, Kobe University, Tohoku University, The University of Tokyo, and Tokyo Institute of Technology developed construction robots for disaster relief that solve the various challenges of conventional construction machines used in such situations. Using a prototype machine, verification tests were performed in places that represented disaster sites to confirm successful performance. This prototype looks like an ordinary hydraulic excavator, but uses the following technologies: The rescue robot is shown with a UAV. (Image: Hiroshi Yoshinada)

Posted in: Briefs, Automation, Robotics, Disaster and emergency management, Emergency management, Robotics, Construction vehicles and equipment, Rescue and emergency vehicles and equipment


Small Robot Has Outstanding Vertical Agility

Power modulation increases the robot’s peak jumping power by storing muscular energy in stretchy tendons.Roboticists at the University of California, Berkeley, have designed a small robot that can leap into the air and then spring off a wall, or perform multiple vertical jumps in a row, resulting in what they claim is the highest robotic vertical jumping agility ever recorded. The agility of the robot opens new pathways of locomotion, and the researchers hope that one day this robot and other vertically agile robots can be used to jump around rubble in search and rescue missions.

Posted in: Briefs, Automation, Robotics, Performance upgrades, Robotics, Rescue and emergency vehicles and equipment, Vehicle dynamics


Interactive Robot Control System and Method of Use

Robonaut 2 can enter hazardous areas or tackle difficult terrain without endangering its human operator.Researchers at NASA’s Johnson Space Center (JSC), in collaboration with General Motors and Oceaneering, have designed a state-of-the-art, highly dexterous, humanoid robot: Robonaut 2 (R2). R2 is made up of multiple systems and subcomponents: vision systems, image-recognition systems, sensors, control algorithms, and much more. R2’s nearly 50 patented and patent-pending technologies have the potential to be game-changers in multiple industries. One of the most promising applications for the R2 technologies is in the area of hazardous environments. R2 has the capability to work in remote locations separate from the human controller. R2 can function autonomously, or it can be controlled by direct teleoperations.

Posted in: Briefs, Automation, Robotics, Artificial intelligence, Human machine interface (HMI), Collaboration and partnering, Systems engineering, Robotics


White Papers

Searching, Exploring and Visualizing Data Using Maple
Sponsored by Maplesoft
Unique Method for Orifice Production
Sponsored by Bird Precision
Save Your Assembly Space and Weight with Smalley Wave Springs
Sponsored by Smalley
Customized Masking Solutions Don’t Require Customized Masks
Sponsored by Dymax
Algorithms for Change Point Analysis
Sponsored by Numerical Algorithms Group
Force Sensors in Robotic Design
Sponsored by Tekscan

White Papers Sponsored By:

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.