Special Coverage

Self-Healing Wire Insulation
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
Space Optical Communications Using Laser Beams
High Field Superconducting Magnets
Active Response Gravity Offload and Method
Strat-X
Sonar Inspection Robot System
Home

Using a Power Grid as an Extremely Large Antenna for Geophysical Imaging

Geomagnetic storms drive geomagnetically induced currents (GICs) in high-voltage power transmission systems. GICs thus carry information about the near-space environment conditions. The U.S. high-voltage power transmission system was used as an extremely large antenna to extract unprecedented spatiotemporal space physical and geological information from distributed GIC observations.

Posted in: Briefs, Tech Briefs, Communications

Read More >>

A Simplified Production of Organic Compounds Containing High Enantiomer Excesses

NASA has developed a novel approach for producing sugars and sugar acids enriched with one of the two enantiomers of individual compounds. This approach can also be adapted for other compounds, such as amino acids. All objects, including chemical compounds, have mirror images, some of which cannot be superimposed. In the case of chemical compounds, these non-superimposable mirror images are called enantiomers and are widely used in biological processes. NASA’s method produces high enantiomer excesses from simple and relatively inexpensive precursors (formaldehyde and simple salts) and hardware components without the need and expense of using (at some stage) biological sources. Unlike the commercial production of most rare enantiomers, this innovation employs conditions that are extremely common, non-biological, and relatively inexpensive to set up.

Posted in: Briefs, Medical

Read More >>

Generation of High-Pressure Oxygen Via Electrochemical Pumping in a Multi-Stage Electrolysis Stack

Innovators at NASA’s Glenn Research Center have developed a method for producing pure high-pressure oxygen via an electrochemical pumping process through a solid oxide electrolysis (SOE) cell stack. Glenn’s device can either concentrate the oxygen in the ambient atmosphere or extract the oxygen via the chemical reduction of carbon dioxide, water, or any combination of these substances. This solid-state device does not use any moving parts or any extra separation processes to purify the delivered oxygen. Instead, Glenn’s technology relies on a multi-stage stack design and an SOE process that includes an oxygen-ion-conducting ceramic membrane to generate high-pressure oxygen within a compact, noiseless device. This process has great potential for use in medical, industrial, and recreational applications.

Posted in: Briefs, Medical

Read More >>

Tension Distribution in Tendon-Driven Fingers

The technology can be used in telemedicine, surgical robotics, home medical service robotics, medical rehabilitation, and hospital service robotics. Researchers at the NASA Johnson Space Center (JSC), in collaboration with General Motors and Oceaneering, have designed a state-of-the-art, highly dexterous, humanoid robot called Robonaut 2 (R2). R2 is made up of multiple component technologies and systems encompassing nearly 50 patented and patent-pending technologies with the potential to be game-changers in multiple industries, including the medical industry. R2 technologies can aid in a variety of medical applications, ranging from telemedicine to handling the logistics of medical procedures. These activities can be done in autonomous mode or in teleoperation mode, where the robot is controlled by a technician or physician. This type of operation would be advantageous in situations where a biomedical hazard poses risks to humans, such as a contagious outbreak or a combat situation. For more routine daily use, R2 could function as an assistant to the hospital staff.

Posted in: Briefs, Medical

Read More >>

Rapid Polymer Sequencer

Solid-state nanopore-based analysis of nucleic acid polymers is revolutionary. No other technique can determine information content in single molecules of genetic material at speeds of 1 subunit per microsecond. Since individual molecules are counted, the output is intrinsically quantitative. The nanopore approach is more generalized than any other method and may be used to analyze any polymer molecule, applying nanofabrication, nanoelectronic components, and high-speed signal acquisition. Geometry of the solid-state nanopore (less than 5 nm in length and 5 nm in diameter) will enable 1-5 nucleotide resolution measurements. This means that maximum resolution will be improved by 100-fold compared to biological ion-channel measurements. The solid-state nanopore sensor will permit sequencing DNA at a much faster rate, along with analyzing electronic properties of individual subunits of DNA or RNA, to obtain linear composition of each genetic polymer molecule.

Posted in: Briefs, Medical

Read More >>

Adaptive Refinement Tools for Tetrahedral Unstructured Grids

This software can potentially be used in aerospace, aviation, and automotive applications. NASA’s Langley Research Center engineers have developed a new software package for more facile computational fluid dynamics. The software’s fast user run time, robustness, and efficiency have enabled its extensive use in space shuttle modeling. Adaptive Refinement Tool (ART) permits the computational modeling of flow, including jet or rocket plumes, wakes, and shocks via unstructured tetrahedral grids. Commercially available software packages often struggle to sufficiently and quickly model such complex examples of flow. ART also allows cells to be divided into two, four, or eight cells as compared to traditional software, which allows cell division only in units of eight. This is advantageous as it allows the user to control cell division more succinctly. ART executes commands via colloquial English, and has built-in internal statistical programming that increases its ease of use. ART allows the user the choice of alternate variables such as temperature or pressure at will, which facilitates modeling unusual or unlikely occurrences.

Posted in: Briefs, Software

Read More >>

Self-Stabilizing, Byzantine-Fault-Tolerant Clock Synchronization System and Method

Initially developed for wired applications, the technology could also be applied to wireless systems. NASA’s Langley Research Center has developed a portfolio of technologies regarding clock synchronization in distributed systems. Distributed synchronous systems that need to provide globally coordinated operations require each component (node) in the system to be precisely synchronized. Such systems could include electronic components within an aircraft or automobile, or large-scale networks of components that communicate with each other (e.g. multiple aircraft or automobiles). NASA’s technologies provide for very quick synchronization while tolerating various faults. These protocols provide distributed autonomous synchronization (i.e. no master clock signal required) and do not rely on any assumptions regarding the initial state of the system or internal status of the nodes.

Posted in: Briefs, Software

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.