Special Coverage

High Field Superconducting Magnets
Active Response Gravity Offload and Method
Strat-X
Sonar Inspection Robot System
Lightweight Internal Device to Measure Tension in Hollow- Braided Cordage
System, Apparatus, and Method for Pedal Control
Dust Tolerant Connectors
Home

Solid-State Ultracapacitor

Marshall Space Flight Center, Alabama NASA’s Marshall Space Flight Center has developed a solid-state ultracapacitor utilizing a novel nanocomposite dielectric material. The material’s design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations.

Posted in: Briefs, Energy

Read More >>

Double-acting Extremely Light Thermo-Acoustic (DELTA) Converter

This technology enables a new class of lightweight power systems for small aircraft, camping, or micro-cogeneration that is small, quiet, efficient, and essentially maintenance-free. John H. Glenn Research Center, Cleveland, Ohio Power generation from an external or internal heat source using thermal energy conversion technologies such as solid-state thermionics and thermoelectrics or dynamic conversion with Otto, Stirling, Brayton, or Rankine technologies is fundamentally limited in maximum specific power due to either low efficiency and/or operating frequency. These solid-state technologies are low voltage and hence produce a high DC current that restricts their minimum geometry to approximately 4 A/mm2 to avoid overheating. High-power implementations of this technology class are inefficient, large, and heavy.

Posted in: Briefs, Energy

Read More >>

Chassis Short Mitigation and Characterization Technique for the Multi-Mission Radioisotope Thermoelectric Generator

NASA’s Jet Propulsion Laboratory, Pasadena, California The radioisotope thermoelectric generator (RTG) is a flight-proven, capable source of power that reliably converts heat into electricity. NASA and the Department of Energy (DoE) have developed a new generation of such power systems that could be used for a variety of space missions. The newest RTG, called a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), has been designed to operate on Mars and in the vacuum of space. However, shorts between the internal electrical power circuit and chassis frame of the MMRTG have been observed in the engineering unit, qualification unit, and flight unit. The internal shorts seemed to appear and sometimes clear spontaneously. A root cause has not been determined for these internal shorts, and their resistance, power rating, and energy rating are largely unknown. A mitigation and measurement technique is needed.

Posted in: Briefs, Energy

Read More >>

Dust Tolerant Connectors

The ruggedized housing for electrical or fluid connectors is designed to withstand harsh environments and rough handling. John F. Kennedy Space Center, Florida NASA’s Kennedy Space Center has developed a novel ruggedized housing for an electrical or fluid umbilical connector that prevents intrusion of dust, sand, dirt, mud, and moisture during field use under harsh conditions. The technology consists of a pair of hand-sized protective umbilical interface housings, each containing a connector with an integrated end cap. When the end cap covers the connector, the connector is protected. Each housing has a unique lever assembly connected to the end cap that, when squeezed, flips the end cap up to expose the connector. When in the up position, the two end caps face each other. To mate the connectors, the levers on both housings are squeezed, raising the end caps, and the two umbilicals are joined and twisted to couple them. Once the connectors are mated, the levers on both housings are released. This simultaneously seals both the umbilicals and the end caps. When dealing with cryogenic connectors, a purge can be applied to the housings to prevent icing when the connectors are demated.

Posted in: Briefs, Mechanical Components, Fluid Handling, Machinery & Automation

Read More >>

Systems, Methods, and Apparatus of a Low-Conductance Silicon Micro-Leak for Mass Spectrometer Inlet

Goddard Space Flight Center, Greenbelt, Maryland Mass spectrometers on atmospheric entry probes require a method for introducing gas from high-pressure ambient regions to the vacuum of the mass spectrometer interior.

Posted in: Briefs, Mechanical Components, Machinery & Automation

Read More >>

In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

This portfolio of technologies can be used in wind-tunnel force balance applications, and robotics applications such as rovers or prosthetic shoulder joints. Langley Research Center, Hampton, Virginia NASA’s Langley Research Center has developed three techniques and systems to calibrate and validate wind-tunnel force balances and other multi-component force transducers. The first is the Single Vector Calibration System (SVS), which uses a single deadweight for calibration and has been in active use at NASA for over 15 years. The second system is the In-Situ Load System (ILS). The ILS is based on the same fundamental concept as the SVS, but is designed for in-situ verification just prior to testing. Building off of the SVS and ILS, the third system is the Variable Acceleration Force Calibration System (VACS), which shares the single-vector force application concept, but generates those forces differently by keeping the mass constant and varying the acceleration. These techniques and systems provide for less complex and less labor-intensive calibration and verification of multi-component force transducers.

Posted in: Briefs, Mechanical Components, Machinery & Automation

Read More >>

Release of a Stuck Solar Array or Antenna

Several options are examined that may also be useful in remotely controlled terrestrial environments. Goddard Space Flight Center, Greenbelt, Maryland Satellite launches experience approximately one deployment failure every two years. These failures include a solar array or antenna that fails to deploy because it is stuck due to a mechanism failure, or is snagged by a cable or thermal blanket. Knowledge of the exact circumstances of the deployable failure is limited. Ground commanding of the spacecraft is conducted in an attempt to free the stuck deployable.

Posted in: Briefs, Mechanical Components, Machinery & Automation

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.