Special Coverage

Active Aircraft Pylon Noise Control System
Unmanned Aerial Systems Traffic Management
Method of Bonding Dissimilar Materials
Sonar Inspection Robot System
Applying the Dynamic Inertia Measurement Method to Full-Scale Aerospace Vehicles
Method and Apparatus for Measuring Surface Air Pressure
Fully Premixed, Low-Emission, High-Pressure, Multi-Fuel Burner
Self-Healing Wire Insulation
Home

Modules for Inspection, Qualification, and Verification of Pressure Vessels

This automated, modular, standardized system features interchangeable probes.After decades of composite over-wrapped pressure vessel (COPV) development, manufacturing variance is still high, and has necessitated higher safety factors and additional mass to be flown on spacecraft, reducing overall performance. When liners are used in COPVs, they need to be carefully screened before wrapping. These flaws can go undetected and later grow through the thickness of the liner, causing the liner to fail, resulting in a massive leakage of the liner and subsequent mission loss.

Posted in: Briefs, Test & Measurement

Read More >>

In-Flight Pitot-Static Calibration

This precise yet time- and cost-effective method is based on GPS technology using output error optimization.NASA’s Langley Research Center has developed a new method for calibrating pitot-static air data systems used in aircraft. Pitot-static systems are pressure-based instruments that measure the aircraft’s airspeed. These systems must be calibrated in flight to minimize potential error. Current methods — including trailing cone, tower fly-by, and pacer airplane — are time- and cost-intensive, requiring extensive flight time per calibration. NASA’s method can reduce this calibration time by up to an order of magnitude, cutting a significant fraction of the cost. In addition, NASA’s calibration method enables near-real-time monitoring of error in airspeed measurements, which can be used to alert pilots when airspeed instruments are inaccurate or failing. Because of this feature, the technology also has applications in the health usage and monitoring (HUMS) industry. Flight test engineers can be trained to use this method proficiently in 12 days without costly specialized hardware.

Posted in: Briefs, Test & Measurement

Read More >>

In-Situ Formation of Reinforcement Phases in Ultra-High- Temperature Ceramic Composites

This technology could be used in re-entry vehicles, reusable launch vehicles, hypersonic vehicle leading edges, and commercial spacecraft.Future-generation materials for use on space transportation vehicles require substantial improvements in material properties leading to increased reliability and safety, as well as intelligent design to allow for current materials to meet future needs. Ultra-high-temperature ceramics (UHTC), composed primarily of metal diborides, are candidate materials for sharp leading edges on hypersonic re-entry vehicles. NASA has demonstrated that it is possible to form high-aspect-ratio reinforcement phases in-situ during the processing step for both ceramic composites and UHTCs. Initial characterization of these systems has demonstrated that crack deflection along the matrix-reinforcement interface is observed yielding a system of improved toughness over the baseline system, leading to improved mechanical performance. The reinforced composites should therefore reduce the risk of catastrophic failure over current UHTC systems.

Posted in: Briefs, Coatings & Adhesives, Materials

Read More >>

Multi-Phase Ceramic System

Bearing surfaces are typically either metal-on-metal (MOM), ceramic-on-ceramic (COC), or metal-on-polyethylene (MOP). MOM and MOP couplings have the drawback that metallic or polyethylene particles can sometimes separate from the couplings, which can cause significant problems, particularly in a hip or joint replacement. COC couplings are less likely to lose particles due to wear, which makes them more biocompatible, but they are more susceptible to fracture. COC couplings also have a tendency to squeak as they move. Innovators at NASA’s Glenn Research Center have developed a technique using rare earth elements to fabricate a dual-phase ceramic composite that combines a wear-resistant phase and a solid-state lubricant phase. The result is a coupling material that, compared to currently used materials, exhibits a tenfold reduction in the friction coefficient, a sixfold reduction in wear, and a significant reduction in debris caused by wear. Glenn’s groundbreaking rare-earth aluminate composite has considerable potential, not only in biomedical applications, but also in commercial and industrial sectors.

Posted in: Briefs, Ceramics, Materials

Read More >>

Minimally Machined HoneySiC Panels and T300 HoneySiC

The materials are intended for low areal density and near-zero CTE optomechanical structures.The primary purpose of this work is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical, or infrared telescopes.

Posted in: Briefs, Coatings & Adhesives, Materials

Read More >>

Flexible Volumetric Structure

These composite elastic skins can be tailored for specific applications.NASA’s Langley Research Center has developed composite elastic skins for covering shape-changing (morphable) structures. These skins are intended especially for use on advanced aircraft that change shapes in order to assume different aerodynamic properties. Examples of aircraft shape changes include growth or shrinkage of bumps, conformal changes in wing planforms, cambers, twists, and bending of integrated leading and trailing-edge flaps. Prior to this invention, there was no way of providing smooth aerodynamic surfaces capable of large deflections while maintaining smoothness and sufficient rigidity.

Posted in: Briefs, Coatings & Adhesives, Materials

Read More >>

Aeroplastic Composites

Aeroplastic refers to a family of polymeric composites with properties that provide a significant reduction in heat transfer. These composites reduce the thermal conductivity of the base polymer resin between 20%-50% without changing its mechanical properties or modifying the original techniques for processing those polymers. The composites can be made into fibers, molded, or otherwise processed into usable articles. Aeroplastic composites are superior alternatives to prior composite materials with respect to both their thermal conductivity and physical properties.

Posted in: Briefs, Coatings & Adhesives, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.