Special Coverage

Self-Healing Wire Insulation
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
Space Optical Communications Using Laser Beams
High Field Superconducting Magnets
Active Response Gravity Offload and Method
Strat-X
Sonar Inspection Robot System
Home

2010 Create the Future Design Contest Contest Sponsors

The 2010 Create the Future Design Contest is sponsored by COMSOL, Inc. and PTC.

Posted in: Articles

Read More >>

Laser Beam Profiling

What You Need to Know to Do It RightMost people working with lasers today are trying to do something with the light beam, either as the raw beam or, more commonly, modified with optics. Whether it is printing a label on a part, welding a precision joint or repairing a retina, it is important to understand the nature of the laser beam and its performance. Laser beam profiling provides the tools to characterize the laser and know precisely what the beam is doing at the point of the work and if the optics are having the desired effect. Lasers and laser applications come in many varieties, varying in power density, wavelength, depth-of-focus, beam size, pulse duration and myriad other parameters. It is this variety that makes lasers so useful for interacting with and manipulating many different materials and media. But, it is also this variety that adds complexity to the beam profiling process.

Posted in: Articles, ptb catchall

Read More >>

From Aircraft Wings to Wind Turbine Blades: NASA Software Comes Back to Earth with Green Energy Applications

You might think a wind turbine would have more in common with a plane’s propeller than an aircraft wing, but wind blades actually behave a lot more like wings than props. This fact has enabled a valuable spinoff from aerospace to wind energy involving the first software that NASA ever allowed to be commercialized as part of the Agency’s ongoing effort to transfer technology to U.S. business and industry.

Posted in: Articles

Read More >>

Closed System Technology Drives the Trend Toward Safer Dispensing of High-Purity Chemicals

In dozens of industries and in millions of applications around the world, dangerous chemicals are transferred from their original shipping containers into smaller jugs or buckets, or applied to other end-use processes. Historically, the predominant dispensing method in many of these applications has been through an open system where the liquid is poured out of the container. In many industries using high-purity chemicals, a popular dispensing method is a semi-closed system that pumps the liquid out of a drum or container. In these systems, a dip-tube draws chemicals from vertically oriented containers using an attachable hand or electric pump. While a step in the right direction, the semi-closed dispensing system requires a dip-tube that needs to be removed and re-inserted each time a new drum is used, exposing the end user to drips, leaks, and fumes during transfer. The primary drawback of all open and semi-closed systems is that they needlessly expose the user, equipment, and the environment to potentially hazardous chemicals and vapors.

Posted in: Articles, Motion Control

Read More >>

Using the Intel® Architecture in High-Performance Military Embedded DSP Applications

Historically, processors from the PowerPC® family, now known as Power Architecture® processors, have been the dominant choice for implementing Digital Signal Processing (DSP) in high-performance embedded military applications that take advantage of open-system commercial off-the-shelf (COTS) products. These applications include radar, signal intelligence, sonar, and image processing. Today, however, beginning with the dual-core Intel Core™ i7 processors, the low-power, high-performance advantages of the Intel architecture processor technology can be used for the first time to design DSP engines for the rugged deployed COTS signal processing space.In the early 1990s, systems were implemented largely with specialized processors such as the Intel® i860 processor, the Texas Instruments 320C40, and the Analog Devices SHARC®. These processors were popular because of their floating-point performance.

Posted in: Articles, Articles

Read More >>

Protecting COTS Military Electronics From Shock and Vibration

Military systems represent extreme environments for COTS electronic equipment. Many systems involve multiple enclosures, often from different suppliers. Equipment layout, the selection of racks, whether isolation is used, and how the electronics are “housed” can vary widely. There are no standards regarding maximum allowable shock and vibration levels. Design factors are often based on estimates of equipment fragility and expected loads, both of which can be uncertain.

Posted in: Articles, Articles

Read More >>

Let the Show Begin

VPX is like a three act play. Act one was the launching of a new high density platform for critical embedded computing applications. Leveraging the wildly popular VMEbus in 3U and 6U Eurocard formats, VPX added the capability of using high speed serial switch fabric technologies such as Ethernet, PCI Express, serial RapidIO, and others, that can be configured in various backplane topologies. VPX also greatly increased the number of backplane pins to handle more data traffic and user I/O making it more effective for today’s applications.

Posted in: Articles, Open VPX, Articles

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.