Special Coverage

Lightweight Internal Device to Measure Tension in Hollow- Braided Cordage
System, Apparatus, and Method for Pedal Control
Dust Tolerant Connectors
Foldable and Deployable Power Collection System
Iodine-Compatible Hall Effect Thruster
Development of a Novel Electrospinning System with Automated Positioning and Control Software
2016 Create The Future Design Contest Open For Entries
Home

How Cool Is That? Ensuring Effective Thermal Design

Proper thermal design of any electronics-based system is key to its long-term reliability. NASA engineering expertise in this area is renowned. The International Space Station (ISS) operates in a temperature environment from 250 degrees F (121 °C), down to a minus 250 degrees F (-157 °C), while maintaining a survivable internal temperature. Yet, in the commercial electronics industry many systems engineers have limited knowledge about thermal design. Furthermore, military and industrial customers with wide temperature range applications, want to save money by using commercially available off-the-shelf (COTS) equipment.

Posted in: Articles, Articles

Read More >>

Innovative Waste Heat Recovery Systems and Improvements with Advanced Turbomachinery

The increasing cost of fuel and U.S. dependency on foreign fuel supplies has renewed interest in conserving energy and in generating electric power using otherwise wasted heat energy from prime mover processes. Such power generation systems are typically based on the thermodynamic Rankine cycle or the reverse Rankine cycles (i.e., a vapor compression, a.k.a. heat pumping). These systems can use water or organic-based (i.e., refrigerant-type) working fluids for Organic Rankine Cycle (ORC) power generation.

Posted in: Articles

Read More >>

Centennial Challenges: NASA’s Prize Program for the “Citizen Inventor”

The Centennial Challenges are NASA’s prizes for the citizen inventor. Through open competitions, we seek novel solutions from diverse sources in technology challenges of interest to NASA and the nation. Competitions are open to anyone, and teams have included small businesses, university students, independent groups, and individual inventors.

Posted in: Articles

Read More >>

Demystifying Electro-Photonic Integrated Circuits

Fiber optic interconnects have enjoyed a relatively long history in long haul telecommunications due to their ability to transmit large quantities of data across great distances. As our society’s insatiable demand for communications bandwidth grows, we have seen the emerging necessity of optical solutions for ever shorter links, and at a much larger scale. Whereas conventional optical systems were used predominantly for links spanning thousands of kilometers, today’s state-of-the-art data centers require them for most links greater than 5 meters in length. With no signs of the rapid increase for bandwidth diminishing, within a few years the need for optics will take its next big step beyond the enterprise world and into the mainstream consumer markets.

Posted in: Articles, ptb catchall

Read More >>

Using Light to Reverse-Engineer a Steam Turbine

A turbine manufacturer wanted to get more power out of hundreds of turbines that were originally built and installed in the 1950s. The basic idea was to use the original outer casing but upgrade the internal components such as the blades and diaphragm. All of the components of the turbine needed to be reverse-engineered so that computer aided design (CAD) models could be created and used as the basis to analyze and optimize the turbine design. The parts ranged from small components to the case, which is 11 feet long, 6 feet wide, and 8 feet tall, and weighs 30,000 pounds.

Posted in: Articles

Read More >>

Using Aspheres To Increase Optical System Performance

In a perfect imaging system, light exists as a spherical wave that converges to form a point image. However, in practice wavefront aberrations act to perturb the wavefront from its ideal spherical shape, which can degrade image quality. The appropriate use of ashperical lenses in an optical system can improve performance with a minimum addition of optical elements.

Posted in: Articles, ptb catchall

Read More >>

Monitoring Carbon Composite Structures With Optical Fiber Sensors

Fiber reinforced polymer composites are revolutionizing the design of large, high-performance structures in the aerospace, marine and power generation industries due to their advantages in areas such as corrosion resistance, specific strength and tailorability. The use of carbon fiber reinforced composites, the most common and lightest of the “non-exotic” composite materials, is now very widespread. The maiden flight of The Boeing Company’s new 787 Dreamliner, the first commercial aircraft to use composites for most of its construction in December of 2009, is a stark example of just how far carbon fiber composite materials have come in the last 50 years: from hockey sticks, tennis rackets and R&D labs, to carrying us from here to there at 500+ mph.

Posted in: Articles, ptb catchall

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.