Special Coverage


Optical Fiber Cleaver

NYFORS (Stockholm, Sweden) has introduced a new high-precision optical fiber cleaver that accommodates fiber diameters from 80 μm up to more than 400 μm. The new AutoCleaver LDF-M‘ is specifically designed to provide fast and reliable high-quality cleaving capability for the mid-span to large diameter fibers commonly used in fiber laser manufacturing and other specialty fiber applications. Based on the well-known AutoCleaver‘ platform, this is a fully automated optical fiber cleaver for production and laboratory settings with a cycle time of less than 15 seconds. Flat and smooth fiber end faces, free of surface defects such as hackles, mist, and chips, are produced with high consistency thanks to the stable mechanical design and proven tension-and-scribe cleaving process.

Posted in: Products, Photonics


Miniaturized Sensor

greenTEG AG (Zurich, Switzerland) has added a new small thermal sensor for radiation measurements to its product portfolio. At just 4.4 x 4.4 x 0.5 mm, the Gskin-XB 45 9R for radiation measurements is among the smallest sensors of its kind. Its features include: signal linearity with power below 0.5% across a broad power range (10 uW – 1 W); homogeneous signal across the sensor area (independent of beam position and angle); spectral range from DUV to MIR; and scalable pricing model for large volume applications.

Posted in: Products, Photonics


New Laser Technology to Make 2020 Mission to Mars

NASA announced recently that laser technology originally developed at Los Alamos National Laboratory has been selected for its new Mars mission in 2020. SuperCam, which builds upon the successful capabilities demonstrated aboard the Curiosity Rover during NASA’s current Mars Mission, will allow researchers to sample rocks and other targets from a distance using a laser.

Posted in: Electronics & Computers, Electronics, Imaging, Photonics, Lasers & Laser Systems, Sensors, Detectors, Test & Measurement, Measuring Instruments, Aerospace, Machinery & Automation, News


Secret of Eumelanin’s Ability to Absorb Broad Spectrum of Light Uncovered

Melanin — and specifically, the form called eumelanin — is the primary pigment that gives humans the coloring of their skin, hair, and eyes. It protects the body from the hazards of ultraviolet and other radiation that can damage cells and lead to skin cancer. But the exact reason why the compound is so effective at blocking such a broad spectrum of sunlight has remained something of a mystery. Now, however, researchers at MIT and other institutions have solved that mystery, potentially opening the way for the development of synthetic materials that could have similar light-blocking properties.

Posted in: Electronics & Computers, Photonics, Optics, Materials, Composites, Medical, Solar Power, Energy, News


NASA Engineer Set to Complete First 3D-Printed Space Cameras

By the end of September, NASA aerospace engineer Jason Budinoff is expected to complete the first imaging telescopes ever assembled almost exclusively from 3D-manufactured components.Under his multi-pronged project, funded by Goddard’s Internal Research and Development (IRAD) program, Budinoff is building a fully functional, 50-millimeter (2-inch) camera whose outer tube, baffles and optical mounts are all printed as a single structure. The instrument is appropriately sized for a CubeSat, a tiny satellite comprised of individual units each about four inches on a side. The instrument will be equipped with conventionally fabricated mirrors and glass lenses and will undergo vibration and thermal-vacuum testing next year.Budinoff also is assembling a 350-millimeter (14-inch) dual-channel telescope whose size is more representative of a typical space telescope.Should he prove the approach, Budinoff said NASA scientists would benefit enormously — particularly those interested in building infrared-sensing instruments, which typically operate at super-cold temperatures to gather the infrared light that can be easily overwhelmed by instrument-generated heat. Often, these instruments are made of different materials. However, if all the instrument’s components, including the mirrors, were made of aluminum, then many of the separate parts could be 3D printed as single structures, reducing the parts count and material mismatch. This would decrease the number of interfaces and increase the instrument’s stability.SourceAlso: Learn about an Image Processing Method To Determine Dust Optical Density.

Posted in: Cameras, Imaging, Photonics, Optics, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Aerospace, RF & Microwave Electronics, News


Researchers Build 'Invisible' Materials with Light

Metamaterials have a wide range of potential applications, including sensing and improving military stealth technology. Before cloaking devices can become reality on a larger scale, however, researchers must determine how to make the right materials at the nanoscale. Using light is now shown to be an enormous help in such nano-construction. A new technique uses light like a needle to thread long chains of particles. The development could help bring sci-fi concepts, such as cloaking devices, one step closer to reality.The technique developed by the University of Cambridge team involves using unfocused laser light as billions of needles, stitching gold nanoparticles together into long strings, directly in water for the first time. The strings can then be stacked into layers one on top of the other, similar to Lego bricks. The method makes it possible to produce materials in much higher quantities than can be made through current techniques. SourceAlso: See other Sensors tech briefs.

Posted in: Photonics, Lasers & Laser Systems, Materials, Sensors, Nanotechnology, Defense, News


New Study Uses Blizzard to Measure Wind Turbine Airflow

A study by researchers at the University of Minnesota using snow during a Minnesota blizzard is giving researchers new insight into the airflow around large wind turbines. This research is essential to improving wind energy efficiency, especially in wind farms where airflows from many large wind turbines interact with each other. As wind turbines have grown to more than 100 meters tall, field research in real-world settings has become more difficult.

Posted in: Video, Visualization Software, Imaging, Photonics, Optics, Wind Power, Energy Efficiency, Energy, Test & Measurement, Measuring Instruments, News