Special Coverage

Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing

Coming to a Lab Bench Near You: Femtosecond X-Ray Spectroscopy

Upon light activation (in purple, bottom row’s ball-and-stick diagram), the cyclic structure of the 1,3-cyclohexadiene molecule rapidly unravels into a near-linear shape in just 200 femtoseconds. Using ultrafast X-ray spectroscopy, researchers have captured in real time the accompanying transformation of the molecule’s outer electron “clouds” (in yellow and teal, top row’s sphere diagram) as the structure unfurls. (Credit: Kristina Chang/Berkeley Lab)

The ephemeral electron movements in a transient state of a reaction important in biochemical and optoelectronic processes have been captured and, for the first time, directly characterized using ultrafast X-ray spectroscopy at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). Like many rearrangements of molecular structures, the ring-opening reactions in this study occur on timescales of hundreds of femtoseconds (1 femtosecond equals a millionth of a billionth of a second). The researchers were able to collect snapshots of the electronic structure during the reaction by using femtosecond pulses of X-ray light on a tabletop apparatus.

Posted in: News, Lasers & Laser Systems, Optics, Photonics, Measuring Instruments, Test & Measurement

Engineers Invent Method to Control Light Propagation in Waveguides

Artistic illustration of a photonic integrated device. In one arm an incident fundamental waveguide mode (with one lobe in the waveguide cross-section) is converted into the second-order mode (with two lobes in the waveguide cross-section). In the other arm the incident fundamental waveguide mode is converted into strong surface waves. (Illustration courtesy of Adam Overvig and Nanfang Yu)

A team of Columbia Engineering researchers, led by Applied Physics Assistant Professor Nanfang Yu, has invented a method to control light propagating in confined pathways, or waveguides, with high efficiency by using nano-antennas. To demonstrate this technique, they built photonic integrated devices that not only had record-small footprints but were also able to maintain optimal performance over an unprecedented broad wavelength range.

Posted in: News, Nanotechnology, Optical Components, Optics, Photonics

Need Glass? Push Print.

LLNL researchers have reported the synthesis of 3D printed transparent glass components using a "slurry" of silica particles extruded through a direct-ink writing process. From left: LLNL chemical engineer and project lead Rebecca Dylla-Spears and LLNL materials engineer Du Nguyen.

Lawrence Livermore National Laboratory scientists and academic collaborators from the University of Minnesota and Oklahoma State University have demonstrated the synthesis of transparent glass through 3D printing, a development that could ultimately lead to altering the design and structure of lasers and other devices that incorporate optics.

Posted in: News, Lasers & Laser Systems, Optical Components, Optics

What’s New on TechBriefs.com: Asteroid Detection, Blood-Pressure Monitoring, and Breaking the ‘Bandwidth Bottleneck’

Did you know that a 1-kilometer-wide asteroid flew past the Earth this month? Or that a chip-scale device provides broader bandwidth instantaneously to more users? Or that a new "Bold Band" offers a wearable way to monitor blood pressure? Make sure you've seen the latest stories on TechBriefs.com.

Posted in: News, Aerospace, Imaging, Patient Monitoring, Photonics

Q&A: Photonics Breakthrough 'Tunes' Wireless Communications

A chip-scale optical device, developed by a team from the University of Sydney’s Australian Institute for Nanoscale Science and Technology, achieves radio frequency signal control at sub-nanosecond time scales. The photonics breakthrough has the potential to provide broader bandwidth instantaneously to more users.

Posted in: News, Communications, Optical Components, Optics, Photonics

Researchers Sculpt Optical Micro-Structures

Materials scientists at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute of Biologically Inspired Engineering used a new framework to grow sophisticated optical micro-components, including trumpet-shaped assemblages that operate as waveguides.

Posted in: News, Manufacturing & Prototyping, Optical Components, Optics

Corrective 'Eyeglasses' Created For X-Ray Research Facilities

Even when an X-ray beam is steered and focused with advanced mirrors and other optics, abnormalities can creep in. These problems have names familiar to those with imperfect vision, such as “astigmatism” or “coma” and “spherical” errors. And just like our eyes, an X-ray beam can lose power and focus when its alignment isn’t perfect. To address this challenge with X-rays, researchers designed and built special spectacles, or corrective phase plates, for use at light sources that use high-intensity X-rays to probe matter in fine detail.

Posted in: News, ptb catchall, Imaging, Optical Components, Photonics

Researchers Craft New Material That Could Improve LED Screens

Researchers working at the Ultrafast Laser Lab at the University of Kansas successfully created a new bilayer material, with each layer measuring less than one nanometer in thickness. The new material, that someday could lead to more efficient and versatile light emission, was made by combining atomically thin layers of molybdenum disulfide and rhenium disulfide.

Posted in: News, ptb catchall, LEDs, Powering & Controlling LEDs, Materials, Optical Components, Optics, Photonics

Optical Generation of Ultrasound Via Photoacoustic Effect

Limitations of the piezoelectric array technologies conventionally used for ultrasonics inspired a group of University College London researchers to explore an alternative mechanism for generating ultrasound via light, also known as the photoacoustic effect. Coupling this with 3-D printing, the group was able to generate sound fields with specific shapes for potential use in biological cell manipulation and drug delivery.

Posted in: News, ptb catchall, Optical Components, Optics, Photonics

Silicon Nanoantennas Turn Light Around

An artist’s rendering of nonlinear light scattering by a dimer of two silicon particles with a variable radiation pattern.

A team of physicists from ITMO University, MIPT, and The University of Texas at Austin have developed an unconventional nanoantenna that scatters light in a particular direction depending on the intensity of incident radiation. The research findings will help with the development of flexible optical information processing in telecommunication systems.

Posted in: News, Lasers & Laser Systems, Optics, Photonics

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.