Special Coverage

Self-Healing Wire Insulation
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
Space Optical Communications Using Laser Beams
High Field Superconducting Magnets
Active Response Gravity Offload and Method
Strat-X
Sonar Inspection Robot System
Home

Continental-Scale Mapping of Adélie Penguin Colonies from Landsat Imagery

Remote sensing is used for biological conservation. Goddard Space Flight Center, Greenbelt, Maryland The Adélie penguin has a circum-Antarctic distribution and is widely considered a useful indicator of status and change in the Antarctic and Southern Ocean ecosystems. Breeding distribution of the Adélie penguin was surveyed with Landsat-7 Enhanced Thematic Mapper Plus (ETM+) over the entire continent of Antarctica. An algorithm was designed to minimize radiometric noise and to retrieve Adélie penguin colony location and spatial extent from the ETM+ data. In all, 259 ETM+ scenes were selected from the Lansdat archive from the 1999–2003 era and were used in the retrieval. Pixel clustering identified a total of 244 individual Adélie penguin colonies, ranging in size from a single pixel (900 m2) to a maximum of 875 pixels (0.788 km2). The Landsat retrievals successfully located Adélie penguin colonies that accounted for ≈96 to 97% of the regional population used as ground truth, with errors of omission and commission on the order of only 1 to 2%.

Posted in: Briefs, Tech Briefs, Environmental Monitoring, Imaging, Photonics

Read More >>

Photogrammetric-Based Pose Initialization and Propagation for Inertial Navigation Systems

NASA’s Jet Propulsion Laboratory, Pasadena, California The purpose of the Pose Initialization and Propagation (PIP) system is to provide an absolute navigational solution (position, velocity, and attitude) to a moving vehicle without using GPS. This was developed as a navigation system for rocket launches in a GPS-denied environment, but it is applicable to a variety of moving vehicles. It was designed to be integrated with JPL’s Terrain Relative Navigation system as a test of the Mars Entry, Descent, and Landing (EDL) system. It was successfully used by JPL on Masten Space Systems’ Xombie vehicle in 2014.

Posted in: Briefs, Tech Briefs, Imaging, Photonics

Read More >>

Multi-Channel Laser Absorption Spectrometer for Combustion Product Monitoring

This instrument can detect fires associated with electrical wiring and electronics packaging materials. NASA’s Jet Propulsion Laboratory, Pasadena, California Tunable laser absorption spectrometer (TLAS) sensors enable gas monitoring with high accuracy and gas specificity, and can be optimized for continuous, maintenance-free operation on long-duration manned spacecraft missions. This innovation is a portable, five-channel TLAS instrument designed to continuously monitor ambient concentrations of carbon monoxide, hydrogen chloride, hydrogen cyanide, hydrogen fluoride, and carbon dioxide, with low-level detection limits below the standard spacecraft maximum allowable concentrations. Monitoring of these particular hazardous compounds allows tracking of ambient conditions and enables detection of fires associated with electrical wiring and electronics packaging materials.

Posted in: Briefs, TSP, Tech Briefs, Imaging, Photonics

Read More >>

Disturbance-Free, High-Resolution Imaging from Space

Telecommunication satellites, astrophysical imaging, remote sensing, surveillance, and reconnaissance from space could all benefit from this innovation. NASA’s Jet Propulsion Laboratory, Pasadena, California All imaging systems from space are affected by disturbances originating in the spacecraft in the form of mechanical noise from thruster and reaction/momentum wheels, and sensor noise. A drag-free system is truly unaffected by any disturbances, as it is in pure freefall. Hence, leveraging drag-free technology can provide a quantum leap in improvement for spaceborne imaging systems.

Posted in: Briefs, Tech Briefs, Imaging, Photonics

Read More >>

SCaN Optical Link Assessment Tool Version 2

John H. Glenn Research Center, Cleveland, Ohio In response to the requirements of the Space-Based Relay Study (SBRS) undertaken by NASA in 2013, as well as the Integrated Radio and Optical Communications (iROC) project being conducted by NASA Glenn Research Center (GRC) beginning in 2012, a calculation procedure was required to rapidly assess the operation of optical communication links originating from within deep space (in particular, from around Mars in the case of iROC), as well as within the near-Earth scenarios of LEO and GEO (in the case of SBRS). Such an assessment included the specification of the design components of the optical system to achieve reliable communications as prescribed by one or several metrics that indicate overall system operation. Additionally, it was also desired to be able to dynamically evaluate such optical link operation as the satellite/earth orbital positions evolve during the mission lifetime.

Posted in: Briefs, Tech Briefs, Imaging, Photonics

Read More >>

Thermal Cycle Qualification of Radiated Solar Arrays for 50 to 133 K Temperatures in Vacuum

A closed loop system needs no liquid helium. NASA’s Jet Propulsion Laboratory, Pasadena, California Solar arrays (radiated or non-radiated) and other technologies are candidate materials for projects in JPL. Some of the projects need to qualify these potential technologies to cryogenic extreme temperatures (from 133 to 50 K or lower). Those technologies need to survive for more than 120 thermal cycles in a thermal vacuum environment to meet three times mission life of the ECM project per JPL design principles. There is not any published thermal cycling qualification data for solar arrays in vacuum to those of cryogenic temperatures. Therefore, an experimental assessment study was undertaken on behalf of the JPL pre-project office for the proposed Europa Clipper mission.

Posted in: Briefs, TSP, Imaging, Photonics

Read More >>

Downhole Regolith Interrogation with Helium-Assisted Drill and Laser Induced Breakdown Spectroscopy

Marshall Space Flight Center, Alabama It is of great interest to the scientific community to have the ability to analyze drilled boreholes in situ on the surfaces of the Moon and Mars. The goal of this work was to design and fabricate a Downhole Regolith Interrogation with Helium-assisted Drill and Laser Induced Breakdown Spectroscopy (LIBS) system (DIHeDRAL) targeted towards such applications. A DIHeDRAL instrument would provide synchronous exposure and analysis of volatiles using laser pulses, preserve borehole stratigraphy information, assess regolith mechanical properties through drilling telemetry, and analyze sensitive elemental composition.

Posted in: Briefs, Imaging, Photonics

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.