Special Coverage

Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection
Nasa Tech Briefs

Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points

NASA Langley Research Center has developed a novel approach for a high-density optical data storage system to advance the typical capabilities of an optical data storage system. Operating at any laser wavelength from infrared (IR), visible, ultraviolet (UV), and X-ray regimes, the NASA technology utilizes special beam focusing techniques to achieve extremely short focal lengths and ultra-small spot sizes. The technology could be used with any laser wavelength and soft X-ray regime, and can be adapted to take advantage of any optical media. The high-density data storage capability is solely a function of the reduced laser/X-ray spot size.

Posted in: Briefs, Photonics, Lasers, Optics, Waveguides, Data management


CUDA Framework for Linear Time-Invariant Control of Adaptive Optics Systems

The predictor used here is computed directly from a measured open-loop disturbance sequence using an efficient subspace identification algorithm.Current science objectives, such as high-contrast imaging of exoplanets, have led to the development of highorder adaptive optics (AO) systems possessing several thousand deformable mirror (DM) actuators. These systems typically rely on integrator-based control architectures, where the temporal error rejection bandwidth is limited by the computational latency between wavefront measurement and application of the DM commands. In many systems, this latency is the driving factor behind residual wavefront error.

Posted in: Briefs, Photonics, Mirrors, Adaptive control, Architecture, Computer software and hardware, Optics, Sensors and actuators


Arrayed Micro-Ring Spectrometer System and Method of Use

This miniaturized system performs rapid multi-spectral analysis and imaging.NASA Langley Research Center has developed a novel spectral analysis system that provides rapid multispectral analysis and imaging in a miniaturized system design. Typical spectrometers make use of linear gratings with linear slits or charge-coupled device (CCD) arrays to separate and detect light in its component wavelengths to build a spectrum across a range of wavelengths. Such conventional spectrometers are difficult to miniaturize below a few centimeters. Creating an image with these systems also requires physical rastering of the light beam and detection system across an area to build up the individual data points of an image. The NASA Micro-Ring Thin-Film Spectrometer technology makes use of a microring grating to separate the component wavelengths of the light signal for detection and spectral analysis. Due to the miniaturized design obtained by Fresnel diffraction, an array of these micro-ring grating-based spectrometers can be constructed to enable extremely small-size, multi-spectral imaging of an analysis area.

Posted in: Briefs, Photonics, Downsizing, Spectroscopy, Product development, Refractory materials


Resonance-Actuation of Microshutter Arrays

This innovation uses MEMS technology to selectively capture spectra of distant objects.The field of view required for future missions is much larger than for the James Webb Space Telescope (JWST). Researchers at NASA’s Goddard Space Flight Center have created a new actuation scheme to reduce mass and complexity of the microshutters used on the NIRSpec instrument. This new development implements pulsed electrostatic actuation in place of magnetic actuation.

Posted in: Briefs, Photonics, Optics, Sensors and actuators, Product development, Refractory materials


A Novel Orbiting Cloud Imager System for IR/UV/ X-Ray Bands

Applications include telecommunications involving satellite links, agile military communication, reconnaissance, and surveillance of ground assets from orbit.Typically, the cost of a spaceborne imaging system is driven by the size and mass of the primary aperture. Innovative solutions for imagers that are less complex and are lightweight are very desirable. Currently, telescopes such as JWST and ATLAST are very expensive and very complex.

Posted in: Briefs, Photonics, Downsizing, Optics, Lightweighting, Satellites


2.2-Micron, Uncooled, InGaAs Photodiodes and Balanced Photoreceivers up to 25-GHz Bandwidth

These photodiodes have applications in LiDAR sensors, telecommunications links, and pulsed laser systems.Traditional applications for 2-micron photodetectors have been largely dominated by passive remote sensing where detectors having bandwidth of even one megahertz are deemed sufficient. The onus in such applications is to achieve low dark current through active cooling. The advent of high-power, 2-micron-wave-length lasers have made coherent LiDARs viable for active sensing applications. Such a system needs photodetectors that can handle high local oscillator optical power and have large bandwidth. Through a combination of high coherent gain and small integration time, a large signal-to-noise ratio can be achieved. Operation at high optical power levels reduces the significance of photodiodes’ dark current. As a result, uncooled operation at room temperature is feasible, simplifying the overall instrument design.

Posted in: Briefs, Photonics, Optics, Remote sensing, Cooling


Fourier Transform Spectrometer System

NASA's Langley Research Center and Science Applications International Corporation have developed a method of processing data from Fourier transform spectroscopy (FTS) measurements that improves upon existing methods. This method is simpler, more accurate, faster, and less expensive than previous methods. It uses less hardware and can be used with all wavelengths.

Posted in: Briefs, Photonics, Architecture, Spectroscopy, Data management


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.