Special Coverage

Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research

Method of Creating Micro-Scale Silver Telluride Grains Covered with Bismuth Nanoparticles

Potential applications include power generation and waste heat recovery, and refrigeration and cooling.

NASA Langley Research Center has developed a novel thermoelectric (TE) material utilizing micro-scale silver telluride grains covered with bismuth nanoparticles. These materials have unique advantages in directly converting any level of thermal energy into electrical power and solid-state cooling by a reverse mode. Although thermoelectric devices are regarded advantageously with their high reliability, their lack of moving parts, and their ability to scale to any sizes, the devices’ energy conversion efficiency remains generally poor.

Posted in: Briefs, Materials

Polyimides Derived from Novel Asymmetric Benzophenone Dianhydrides

NASA's Glenn Research Center invites companies to license or establish partnerships to develop its patented high-temperature, low-melt imide resins for fabrication of automotive components. Produced by a solvent-free melt process, these resins exhibit high glass transition temperatures (Tg = 370 to 400 °C), low melt viscosities (10 to 30 poise), long pot-life (1 to 2 hours), and can be easily processed by low-cost RTM and vacuum-assisted resin transfer molding (VARTM). These RTM resins melt at 260 to 280 °C, and can be cured at 340 to 370 °C in 2 hours without releasing any harmful volatile compounds.

Posted in: Briefs, Materials

Nanotubular Toughening Inclusions

This technology is used for making stable resin dispersions and composite plastic films, and for standard polymer melt processing.

NASA's Langley Research Center has developed an extensive technology portfolio on novel methods for effective dispersion of carbon nanotubes (CNTs) in polymers. The technology portfolio extends from making stable dispersions of CNTs in polymer resins to processes for making composite CNT/polymer films and articles. The technologies apply to a range of polymer types, enable low or high CNT loadings as needed, and can be used with a variety of standard polymer processing methods, including melt processing. Currently, the technology is being used commercially for electrically conductive polymer films for components in electronic printers and copiers.

Posted in: Briefs, Materials

Wear-time Comparison of Three Pressure-sensitive Acrylic Skin Adhesives

This study’s aim was to quantify and understand the adhesive performance of acrylic pressure sensitive skin adhesives when used in a prototypical wearable device worn on the back of the arm.

Posted in: White Papers, White Papers, Coatings & Adhesives, Bio-Medical, Medical

Conformal Coatings Increase Reliability of Critical Aerospace/Defense Systems and Components

In the aerospace and defense industries, conformal coatings are used to protect components from the increasingly harsh environments in which they must operate. As technologies continue to advance, often becoming smaller and more complex and/or utilizing advanced materials in their design, many surface treatment options struggle to provide reliable protection. This Tech Talk examines Parylene conformal coatings and how they ensure the reliability of critical components when failure is not an option.

Posted in: Tech Talks, Coatings & Adhesives, Materials

Will shape memory polymers play a prominent role in non-aerospace applications?

This week's Question: A featured Tech Brief in today's INSIDER highlighted a shape memory polymer from Langley Research Center. Designed initially for morphing spacecraft, the material changes shape when temperature shifts; the thermosetting polymer than returns to its original form once normal conditions are reached. The technology may also have applications in self-deployable structures, smart armors, intelligent medical devices, and other various morphing structures. What do you think? Will shape memory polymers play a prominent role in non-aerospace applications?

Posted in: Question of the Week, Materials

Metal Finishing White Paper: Electropolishing to Improve Corrosion Protection

One of the most common applications for electropolishing is to enhance corrosion resistance on a wide variety of metal alloys, specifically stainless steel. Electropolishing is quickly becoming a replacement process for a long established treatment: Passivation. Passivation is a chemical process that has been used for years to help restore contaminated stainless steel to original corrosion specifications.

Posted in: White Papers, Aerospace, Manufacturing & Prototyping, Materials

Electric Field Activated Shape Memory Polymer Composite

Applications include intelligent medical devices, smart armor, turbine blade stabilization, and aircraft wing stabilization.

NASA’s Langley Research Center has developed a novel shape memory polymer (SMP) made from composite materials for use in morphing structures. In response to an external stimulus such as a temperature change or an electric field, the thermosetting material changes shape, but then returns to its original form once conditions return to normal. Through a precise combination of monomers, conductive fillers, and elastic layers, the NASA polymer matrix can be triggered by two effects — Joule heating and dielectric loss — to increase the response. The new material remedies the limitations of other SMPs currently on the market; namely, the slow stimulant response times, the strength inconsistencies, and the use of toxic epoxies that may complicate manufacturing. NASA has developed prototypes and now seeks a partner to license the technology for commercial applications.

Posted in: Briefs, Materials, Electric power, Product development, Heat treatment, Composite materials, Polymers, Smart materials

Strain-Detecting Composite Materials

These materials can be used in aerospace vehicles and aircraft, or in any application where monitoring total overload or localized strain is critical.

NASA Langley Research Center has developed a metallic material that can be embedded into structural alloys to enhance nondestructive evaluation (NDE) of a structure. Current NDE tools, such as eddy current probes and others, can have some difficulties detecting small flaws in certain materials and structures. Also, using them can be costly, time-consuming, and labor-intensive, often resulting in significant downtime in the case of examination of machinery and vehicles. This innovation is to embed particles that react to strain with easily detected acoustic emissions and change in magnetic properties.

Posted in: Briefs, Materials, On-board diagnostics, On-board diagnostics (OBD), Alloys, Composite materials, Non-destructive tests, Test equipment and instrumentation

Compositions Comprising Nickel-Titanium, Methods of Manufacture Thereof, and Articles Comprising the Same

These solid lubricant coatings provide reduced friction and wear to any lightly loaded sliding mechanism operating from cryogenic to 650 °C.

NASA's Glenn Research Center has developed high-temperature solid lubricant materials suitable for foil gas bearings that enable the commercialization of a broad array of revolutionary oil-free gas turbines, compressors, blowers, motors, and other rotating machines that can operate from cryogenic to redhot temperatures. These tribological (friction and wear) coatings and composite powder metallurgy material innovations have immediate and proven spinoff potential for high-temperature steam turbine control valves, exhaust gas recirculation (EGR) valves, articulating ducts and piping joints, and other industrial and aerospace applications.

Posted in: Briefs, Materials, Lubricants, Powder metallurgy, Nickel, Titanium, Tribology, Bearings

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.