Special Coverage

Home

Nanomaterial Extends Lithium-Sulfur Battery Lifespan

A new nanomaterial could extend the lifespan of lithium-sulfur batteries, and therefore the driving range of electric vehicles.Pacific Northwest National Laboratory researchers added the powder to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.Metal organic frameworks — also called MOFs — are crystal-like compounds made of metal clusters connected to organic molecules, or linkers. Together, the clusters and linkers assemble into porous 3-D structures. During lab tests, a lithium-sulfur battery with PNNL's MOF cathode maintained 89 percent of its initial power capacity after 100 charge-and discharge cycles. Having shown the effectiveness of their MOF cathode, PNNL researchers now plan to further improve the cathode's mixture of materials so it can hold more energy.SourceAlso: Check out other Materials tech briefs.

Posted in: Batteries, Electronics & Computers, Power Management, Materials, Metals, Nanotechnology, News

Read More >>

Switchable Material Absorbs and Stores Sun's Energy

A team at MIT and Harvard University has created a material that absorbs the sun’s heat and stores that energy in chemical form, ready to be released again on demand.The technology provides an opportunity for the expansion of solar power into new realms, specifically applications where heat is the desired output.“It could change the game, since it makes the sun’s energy, in the form of heat, storable and distributable,” says Jeffrey Grossman, the Carl Richard Soderberg Associate Professor of Power Engineering at MIT.SourceAlso: See other Materials tech briefs.

Posted in: Materials, Energy Storage, Solar Power, Renewable Energy, Energy, News

Read More >>

Researchers Use Sun to Produce Solar-Energy Materials

In a recent advance in solar energy, researchers have discovered a way to tap the sun not only as a source of power, but also to directly produce solar energy materials.This breakthrough by chemical engineers at Oregon State University could soon reduce the cost of solar energy, speed production processes, use environmentally benign materials, and make the sun a “one-stop shop” that produces both the materials for solar devices and the energy to power them.The work is based on the use of a “continuous flow” microreactor to produce nanoparticle inks that make solar cells by printing. In this process, simulated sunlight is focused on the solar microreactor to rapidly heat it, while allowing precise control of temperature to aid the quality of the finished product. The light in these experiments was produced artificially, but the process could be done with direct sunlight, and at a fraction of the cost of current approaches.SourceAlso: Read other Materials tech briefs.

Posted in: Manufacturing & Prototyping, Materials, Solar Power, Renewable Energy, Energy, Nanotechnology, News

Read More >>

Transient Electronics Dissolve When Triggered

An Iowa State research team led by Reza Montazami is developing "transient materials" and "transient electronics" that can quickly and completely melt away when a trigger is activated. The development could mean that one day you might be able to send out a signal to destroy a lost credit card.To demonstrate that potential, Montazami played a video showing a blue light-emitting diode mounted on a clear polymer composite base with the electrical leads embedded inside. After a drop of water, the base and wiring began to melt away. As the technology develops, Montazami sees more and more potential for the commercial application of transient materials. A medical device, once its job is done, could harmlessly melt away inside a person’s body. A military device could collect and send its data and then disappear, leaving no trace of an intelligence mission. An environmental sensor could collect climate information, then wash away in the rain. SourceAlso: Read other Electronics & Computers tech briefs.

Posted in: Electronics & Computers, Electronic Components, Electronics, Environmental Monitoring, Green Design & Manufacturing, Materials, Composites, Plastics, Medical, Lighting, LEDs, Semiconductors & ICs, Defense, News

Read More >>

Dispersion of Carbon Nanotubes Into Polymer Matrices to Produce Unique Properties

The present invention addresses the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 to 800 nm), electrical conductivity, and high thermal stability.

Posted in: Materials, Briefs

Read More >>

Carbon Nanotube Growth Density Control

This method uses electricity and temperature to control growth density. Ames Research Center, Moffett Field, California This method provides control over the growth density of carbon nanotubes (CNTs) on a relatively coarse scale, with density adjustment over several orders of magnitude, using an applied electrical field or voltage difference that is aligned substantially perpendicular to the substrate surface, which is adjacent to the surface during growth. Control or influence of CNT growth density on a finer scale, estimated at a factor of 2 to 10, is provided using temperature control for the CNT growth process.

Posted in: Materials, Briefs

Read More >>

Pulsed Plasma Lubricator (PPL) Technology for the In Situ Replenishment of Dry Lubricants in Extreme Environments

Applications include mechanisms that are not easily serviced in the field, including those used in deep sea or arctic oil drilling. NASA missions employing mobility systems and other moving mechanical assemblies for application on Mars, the Moon, and in deep space depend on the reliable operation of these assemblies and their tribological components. Wet lubricants are sometimes used in space applications, but in order to avoid solidification, they often require active heating due to the extreme cold temperatures that are encountered. Dry lubricants, such as molybdenum disulfide (MoS2), are more commonly chosen for space mechanisms because they are not subject to the low-temperature limitations of wet lubricants while also providing superior lubricating properties. A major drawback of dry lubricants is low wear resistance that eventually leads to failure of the assembly as the lubricant is removed.

Posted in: Materials, Briefs

Read More >>