Special Coverage

Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection

Validation of Material Models: Study of Joining and Assembly Systems for Thermoset and Thermoplastic Composite Materials

In Conjunction with SAEThis 30-minute Webinar presents an overview of a four-year study that is a cooperative agreement between the U.S. Department of Energy and the U.S. Automotive Materials Partnership. The objective of this $7 million partnership is to validate and assess the ability of physics-based material models to predict crash performance of automotive primary load-carrying carbon fiber composite structures.

Posted in: On-Demand Webinars, Materials


Solve Demanding Environment Challenges with Parylene Conformal Coatings

Conformal coatings are often used in the electronics, automotive, military, aerospace and medical device industries to protect products from their surrounding environments. As technologies continue to evolve, often becoming smaller and more complex, and are required to survive harsh operating conditions, many conformal coatings struggle to provide reliable, lasting protection.

Posted in: On-Demand Webinars, Coatings & Adhesives, Materials


Metamaterial Structures Shrink When Heated

While most solid materials expand with heat, a new 3D-printed structure built by Massachusetts Institute of Technology (MIT) engineers is designed to shrink. The metamaterial may enable heat-resistant circuit boards.

Posted in: News, Board-Level Electronics, Electronic Components, Materials


Flexible Solar Panels Absorb Diffused Light

Virginia Tech researchers have produced flexible solar panels that can become part of window shades or wallpaper. The material will capture light from the sun as well as light from sources inside buildings.

Posted in: News, Energy Efficiency, Renewable Energy, Solar Power, Materials


Adaptive Thermal Management System

This technology employs a unique way to autonomously regulate the temperature of a structure or vessel.NASA seeks to license the Adaptive Thermal Management System (ATMS) for use in commercial applications. Developed at the John F. Kennedy Space Center, the ATMS provides a way to regulate heat transfer and enable thermal management between two opposing surfaces in either direction. The system has the capability to adapt to provide conductive or insulative functionality depending on environmental conditions or applied stimuli. The ATMS can be designed for use in manufacturing, storage vessels, fluid transfer, aerospace and building architectures, and many other applications to reduce unwanted heat transfer, lower energy usage, or maintain environments at a specific temperature. The ATMS is part of NASA’s technology transfer program, which seeks to promote the commercial use of NASA-developed technologies.

Posted in: Briefs, Materials, Thermal management, Conductivity, Insulation


Method of Bonding Dissimilar Materials

Elastic adhesive overcomes the problems associated with large differences in thermal expansion coefficients. An image of the Materials International Space Station Experiment-5 (MISSE-5) samples prior to launch shows a golden thermal blanket with flexible material samples attached. NASA’s Goddard Space Flight Center has developed a new method for bonding dissimilar materials using an elastic adhesive to permit the bond to withstand variations in temperature and pressure. Specifically, NASA uses this method to provide a >98% specular finish on composite materials that is proven capable of withstanding ultraviolet solar radiation exposure in a vacuum and thermal cycling from –115 °C to +65 °C, as well as meeting outgassing requirement limits of 1%.

Posted in: Briefs, Materials, Joining, Adhesives and sealants, Composite materials, Elastomers, Durability


Nanoencapsulated Aerogels Produced by Monomer Vapor Deposition and Polymerization

This technology provides a method for making strong and lightweight aerogels with insulating properties. The nano-encapsulated aerogel technology has the strength and insulation properties for many applications. The Johnson Space Center researched methods to coat aerogel insulation in order to make it better able to withstand vibration, mechanical compression and flexure, and other environmental damage. This NASA-developed nanoencapsulated aerogel technology is a method for increasing the strength of the aerogel through a coating process while maintaining its insulating properties. With this ruggedizing process, the coating of the aerogel reduces mechanical damage, enabling its practical use in products that might not be suitable with the more fragile aerogel. The basic coating can also shield it from adsorbing humidity or other gases, which could otherwise bind to the substance and change its properties. Functionalized coatings could be developed to adsorb certain gases if that is desired. Aerogel’s low density and extremely low thermal conductivity make it useful as a lightweight, volume-efficient insulation material. Encapsulating the aerogel expands its ability to be incorporated into products that are exposed to vibration and compression during manufacture, shipping, or use. It can also improve its flexibility, opening up a range of new product uses.

Posted in: Briefs, Materials, Coatings, colorants, and finishes, Insulation, Nanomaterials, Durability


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.