Special Coverage

Active Aircraft Pylon Noise Control System
Unmanned Aerial Systems Traffic Management
Method of Bonding Dissimilar Materials
Sonar Inspection Robot System
Applying the Dynamic Inertia Measurement Method to Full-Scale Aerospace Vehicles
Method and Apparatus for Measuring Surface Air Pressure
Fully Premixed, Low-Emission, High-Pressure, Multi-Fuel Burner
Self-Healing Wire Insulation
Home

Wholly Aromatic Ether-Imides as n-Type Semiconductors

Some of the compounds exhibit promising electron-transport properties. Some wholly aromatic ether-imides consisting of rod-shaped, relatively-low-mass molecules that can form liquid crystals have been investigated for potential utility as electron-donor-type (n-type) organic semiconductors. It is envisioned that after further research to improve understanding of their physical and chemical properties, compounds of this type would be used to make thin-film semiconductor devices (e.g., photovoltaic cells and field-effect transistors) on flexible electronic-circuit substrates.

Posted in: Briefs, TSP, Materials

Read More >>

Making Activated Carbon by Wet Pressurized Pyrolysis

Thermomechanical instabilities and associated frequency instabilities are reduced. A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams.

Posted in: Briefs, Materials

Read More >>

Composite Solid Electrolyte Containing Li+- Conducting Fibers

Li+-ion conductivities are greater than those achieved before. Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are highmolecular- weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li+- conductive, inorganic fibers.

Posted in: Briefs, TSP, Materials

Read More >>

Electrically Conductive Anodized Aluminum Surfaces

These coatings are highly adherent, transparent, and relatively inexpensive. Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephone-exchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge.

Posted in: Briefs, TSP, Materials

Read More >>

SiC Composite Turbine Vanes

Y-cloth was conceived to provide fiber reinforcement for sharp trailing edges. Turbine inlet guide vanes have been fabricated from composites of silicon carbide fibers in silicon carbide matrices. A unique design for a cloth made from SiC fibers makes it possible to realize the geometric features necessary to form these vanes in the same airfoil shapes as those of prior metal vanes.

Posted in: Briefs, TSP, Materials

Read More >>

Thermoelectric Inhomogeneities in (Ag1-SbTe2)x(PbTe)1-x

A document presents a study of why materials of composition (Ag1–ySbTe2)0.05 (PbTe)0.95 [0=y=1] were previously reported to have values of the thermoelectric figure of merit [ZT (where Z = a2/??, a is the Seebeck coefficient, ? is electrical resistivity, ? is thermal conductivity, and T is absolute temperature)] ranging from 2. In the study, samples of (AgSbTe2)0.05(PbTe)0.95, (Ag0.67SbTe2)0.05 (PbTe)0.95, and (Ag0.55SbTe2)0.05(PbTe)0.95 were prepared by melting followed, variously, by slow or rapid cooling. Analyses of these samples by x-ray diffraction, electron microscopy, and scanning microprobe measurements of the Seebeck coefficient led to the conclusion that these materials have a multiphase character on a scale of the order of millimeters, even though they appear homogeneous in x-ray diffraction and electron microscopy. The Seebeck measurements showed significant variations, including both n-type and p-type behavior in the same sample. These variations were found to be consistent with observed variations of ZT. The rapidly quenched samples were found to be less inhomogeneous than were the furnace-cooled ones; hence, rapid quenching was suggested as a basis of research on synthesizing more nearly uniform high-ZT samples.

Posted in: Briefs, TSP, Materials

Read More >>

Oxygen-Permeable, Hydrophobic Membranes of Silanized α-Al2O3

These membranes perform better than do organic polymer oxygen-diffusion membranes. Membranes made of silanized alumina have been prepared and tested as prototypes of derivatized ceramic membranes that are both highly permeable to oxygen and hydrophobic. Improved oxygen-permeable, hydrophobic membranes would be attractive for use in several technological disciplines, including supporting high-temperature aqueous-phase oxidation in industrial production of chemicals, oxygenation of aqueous streams for bioreactors, and oxygenation of blood during open-heart surgery and in cases of extreme pulmonary dysfunction. In comparison with organic polymeric oxygen-permeable membranes now commercially available, the derivatized ceramic membranes are more chemically robust, are capable of withstanding higher temperatures, and exhibit higher oxygen-diffusion coefficients.

Posted in: Briefs, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.